tìm các gt nguyên của m để pt sau có nghiệm là số hữu tỉ
mx^2 - 2(m-1)x + ( m-4 ) =0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho phương trình
x^2-x+m=0 ( 1) (m là tham số)
a, Giải phương trình khi m=-6
b, tìm m để pt (1) có nghiệm
c,Tìm n sao cho pt x^2-97x+n=0 (2) ( n là tham số) có các nghiệm là lũy thừa bậc 4 của các nghiệm phương trình (1)
CÂU C
HELP>>>
Gọi x1,x2 là hai nghiệm của pt (1) : x^2 - 97x + a = 0 và x3,x4 là 2 nghiệm của pt (2) : x^2 - x + b = 0
Theo hệ thức Vi-ét :
x1 + x2 = 97 và x1.x2 = a
x3 + x4 = 1 và x3.x4 = b
Theo đề bài :
* x1 + x2 = x3^4 + x4^4
<=> x1 + x2 = (x3^2 + x4^2)^2 - 2.(x3.x4)^2
<=> x1 + x2 = [(x3 + x4)^2 - 2.x3.x4]^2 - 2(x3.x4)^2
<=> 97 = (1 - 2b)^2 - 2b^2
<=> 2b^2 - 4b - 96 = 0 (1)
* x1.x2 = (x3.x4)^4
<=> b^4 = a (2)
Từ (1) được b = 8 hoặc b = -6
Suy ra a = 4096 hoặc a = 1296
Thử lại nhận a = 1296
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20130328075420AAV3DV4
omg thanks rapton321
mik viết mà nó ko hiện lên
viết đề mà ko có
cho pt ẩn x m^2+4m-3=m^2+x
a)giải pt với m =2
b)tìm các giá trị của m để pt có 1 nghiệm duy nhất
c)tìm các giá trị nguyên của m để pt có nghiệm duy nhất là số nguyên
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$
Cho pt bậc hai 2 ẩn x, m là tham số: x2 + mx + 2m - 4 = 0 (1)
a/ Chứng minh pt luôn có nghiệm với mọi giá trị của m
b/ Gọi x1, x2 là 2 nghiệm của pt (1). Tìm các gt nguyên dương của m để bt
A=x1x2/x1+x2 có giá trị nguyên
GIẢI DÙM MÌNH VỚI
a) Ta có:
\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\)
Mà \(\left(m-4\right)^2\ge0\Leftrightarrow\Delta\ge0\)với mọi m
Vậy phương trình luôn có nghiệm với mọi m
b) Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=2m-4\end{cases}}\)
Ta có: \(A=\frac{x_1.x_2}{x_1+x_2}=\frac{2m-4}{-m}=\frac{2m}{-m}-\frac{4}{-m}=-2+\frac{4}{m}\)
Để A đạt giá trị nguyên thì 4/m đạt giá trị nguyên <=> m là ước của 4
Mà m nguyên dương nên m = 1; 2; 4
Vậy m = 1; 2; 4
a,\(\Delta=m^2-4.\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)
=> pt luôn có nghiệm
b,theo hệ thức viét ta có:
\(x_1x_2=2m-4;x_1+x_2=-m\)
\(\Rightarrow A=\frac{2m-4}{-m}=-2+\frac{4}{m}\)
\(\Rightarrow m\inƯ\left(4\right)\)
x ² + 2(m - 1)x - 4 = 0 Tìm m để pt có 2 nghiệm đều là số nguyên
1/ cho hệ pt\(\hept{\begin{cases}x+2y=m\\2x+5y=1\end{cases}}\)a)giải hệ với m=1 . b)tìm m để hệ có nghiệm duy nhất thỏa mãn y=/x/
2/ cho hệ pt \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)a) giải hệ với m=2 .b) tìm các số nguyên m để hệ có nghiệm duy nhất với x>0 và y<0 .
c) tìm các số nguyên m để hệ có nghiệm duy nhất thỏa mãn x>2y
HELP !!!
cách làm nào sai
cho pt x^2-mx+m-1=0 tìm m để pt có 2 nghiệm phân biệt
c1: có a+b+c =1-m+m-1=0 nên pt luôn có 2 nghiệm phân biệt vói mọi m
c2: có a=1 khác 0 nên pt là pt bậc 2 1 ẩn để pt có 2 nghiệm phân biệt delta>0 <=> (m-2)^2 >0 <=> m>2 kl...
c3: có a=1 khác 0 nên pt là pt bậc 2 1 ẩn để pt có 2 nghiệm phân biệt delta>0 <=> (m-2)^2 >0( luôn đúng với mọi m) kl...
giải thích vì sao
m khác 2 nha bn
Học tốt
1/ Tìm các giá trị của tham số m để bpt ( m-1) x^2- ( m-1) x+1>0 nghiệm đúng vs mọi giá trị của x. 2/ Tìm giá trị của tham số m để pt x^2 - ( m-2) x+m^2 -4m=0 có 2 nghiệm trái dấu. 3/ Tìm giá trị của tham số m để pt x^2 -mx+1=0 có 2 nghiệm phân biệt.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
Cho hệ pt \(\hept{\begin{cases}mx+\left(4-m\right)y=3\\3x+\left(m-2\right)y=m\end{cases}}\) Tìm giá trị của m để hệ pt có:
a) Nghiệm là (-2;1)
b) vô số nghiệm
c) x>0, y>0
d) x nguyên, y nguyên