Những câu hỏi liên quan
LO
Xem chi tiết
H24
26 tháng 4 2019 lúc 14:52

Ta có: \(\hept{\begin{cases}\left(1-x\right)^2\ge0\\\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}\forall x\inℝ}\)

\(\Rightarrow VT=0\Leftrightarrow\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\1-y=0\Rightarrow y=1\\1-z=0\Rightarrow z=1\end{cases}}\Leftrightarrow x=y=z\left(đpcm\right)\)

P/s: VT: vế trái

Bình luận (0)
DH
Xem chi tiết
NN
18 tháng 8 2015 lúc 7:59

cậu tra trên google ấy , **** tớ cái nha !

nếu ko thấy trên googlle thì để tớ giúp nhưng cậu phải **** cho tớ đã

Bình luận (0)
H24
Xem chi tiết
PL
17 tháng 1 2016 lúc 8:30

tick đi rồi làm cho

 

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 5 2018 lúc 17:13

Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:

x – y > 0

x > 0 + y

hay x > y (điều phải chứng minh)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 12 2019 lúc 4:31

Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:

x > y

x > y + 0

x – y > 0 (điều phải chứng minh)

Bình luận (0)
HG
Xem chi tiết
TP
16 tháng 8 2017 lúc 9:46

SORY I'M I GRADE 6

Bình luận (2)
LD
3 tháng 5 2018 lúc 9:24

????????

Bình luận (0)
NK
19 tháng 5 2020 lúc 19:31

mày hỏi vả bài kiểm tra à thằng điên 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
6 tháng 1 2024 lúc 19:38

\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)

=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)

=>yz+2xz+3xy=0

=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)

\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)

=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)

=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)

=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)

=>A+xy+2/3xz+1/3yz=1

=>A=1

Bình luận (0)
NT
Xem chi tiết
ND
Xem chi tiết