Đúng thì like phát nha
Vì (1-x)2 >=0; (x-y)2 >=0; (y-z)2 >=0
Mặt khác (1-x)2+(x-y)2+(y-z)2=0
=> (1-x)2=0 => 1-x=0
(x-y)2=0 x-y=0
(y-z)2=0 y-z=0
=> x=1
y=x
z=y
=>x=y=z=1
Vậy x=y=z=1
Ta có :
\(\left(1-x\right)^2\ge0\forall x\)
\(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y-z\right)^2\ge0\forall y;z\)
\(\Rightarrow\left(1-x\right)^2+\left(x-y\right)^2+\left(y-z\right)^2\ge0\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}1-x=0\\x-y=0\\y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)