tìm số có 3 chữ số biết rằng số đó gấp 6lần tổng của chính số đó
tìm một số có ba chữ số biết rằng số đó gấp 6lần tổng các chữ số của nó
SAI RỒI ! , phải là Kagome and inuyasha nhé !
Tìm số tự nhiên có hai chữ số, biết rằng khi viết thêm chữ số 0 vào giữa hai chữ số của số đó ta được số mới gấp 6lần số cũ?
Số tự nhiên hai chữ số cần tìm là .
gọi số có hai chữ số là ab , số mới là a0b , ta có biểu thức a0b = ab x 6 a x 100 + b x 1 = ( a x 10 + b x 1 ) x 6 a x 100 + b x 1 = a x 10 x 6 + b x 1 x 6 a x 100 + b x 1 = a x 60 + b x 6 a x 40 = b x 5 a x 8 = b x 1 Thử : nếu a = 1 thì b = 8 ( nhận ) nếu a = 2 thì b = 16 ( loại ) Kết luận : số đó là 18 thử lại : 18 x 6 = 108
Tìm số có năm chữ số có chữ số hàng chuc nghìn gấp 6lần chữ số hàng trăm và tổng các chữ số của số đó bằng 7
60100 chu gi
Tìm một số có 3 chữ số biết rằng nếu viết thêm chữ số 2 vào bên trái số đóthì được số mới gấp 6lần số ban đầu.
\(\overline{abc}\)theo đề bài
\(\overline{2abc}=6x\overline{abc}\Rightarrow2000+\overline{abc}=6x\overline{abc}\)
\(\Rightarrow2000=5x\overline{abc}\Rightarrow\overline{abc}=2000:5=400\)
tìm một số có 3 chữ số biết rằng số đó gấp 11 lần tổng các chữ số của nó. tìm số đó
Gọi số cần tìm là abc (a, b, c là các số từ 0 đến 9, a # 0) Theo bài ra ta có: abc = 11(a + b + c) 100a + 10b + c = 11a + 11b + 11c (Cấu tạo số và nhân một số với một tổng) 89a = b + 10c (Cùng bớt đi mỗi bên là 11a + 10b + c) 89a = cb => a = 1, cb = 89 => abc = 198 Thử lại: 198 : (1 + 9 + 8) = 11 Vậy số cần tìm là 198
Gọi số cần tìm là abc (a khác 0 và a,b,c là các chữ số)
abc = (a + b + c) x 11
a x 100 + b x 10 + c = a x 11 + b x 11 + c x 11
a x 89 = b + c x 10
a x 89 = b + c0
a x 89 = cb
=> cb là số có 2 chữ số nên a = 1 và cb = 89
Số cần tìm là 198
Tại sao là 89a mình không hiểu
Bài 1 : Tìm số có hai chữ số . Biết rằng số đó gấp 7 lần tổng các chữ số của nó ?
Bài 2 : Tìm số tự nhiên có hai chữ số biết rằng số đó gấp 8 lần tổng các chữ số của nó ?
Gọi số cần tìm là ab
Mà số đó gấp 7 lần tổng các chữ số của nó
\(\Rightarrow\)ab=7.(a+b)
Ta có:ab=7.(a+b)
10a+b=7a+7b
10a-7a=7b-b
3a=6b(1)
Từ 1 suy ra được a=6;b=3
Vậy số cần tìm là 63
Câu2:
Gọi số cần tìm là ab
Mà số đó gấp 8 lần tổng các chữ số của nó
\(\Rightarrow\)ab=8x(a+b)
Ta có:ab=8x(a+b)
10a+b=8a+8b
10a-8a=8b-b
2a=7b(1)
Từ(1) suy ra a=7;b=2
Vậy số cần tìm là 72
Bài 1:
Gọi số cần tìm là ab(bên trên ab có dấu gạch nhé)
Theo đề bài ta có:
ab=7 x (a+b)
a x 10+b=7 x a+7 x b
a x 10-7 x a=7 x b-b
a x 3 = 6 x b
=> a=6 và b=3
Vậy số cần tìm là 63
Câu 2:
Gọi số cần tìm là ab
Theo đề bài ta có:
ab=8 x (a+b)
a x 10+b=8 x a+8 x b
a x 10-8 x a=8 x b -b
a x 2=7 x b
=>a=7 và b=2
Vậy số cần tìm là 72
1.Tìm số tự nhiên có 2 chữ số biết rằng lấy tổng các chữ số của nó cộng với tích các chữ số của nó thì bằng chính nó.
2.Tìm số tự nhiên có 3 chữ số biết rằng số đó gấp 11 lần tổng các chữ số của nó.
3.Hiệu 2 số là 57. Số bị trừ có chữ số hàng đơn vị là 3. Nếu gạch bỏ chữ số hàng đơn vị của số bị trừ thì ta được số trừ. Tìm số bị trừ và số trừ.
1.19
2.198
3.SBT: 63, ST: 6
Tìm số có 3 chữ số biết rằng số đó gấp 13 lần tổng các chữ số của nó?
Gọi số đó là \(\overline{abc}\left(a,b,c\in N\right)\)
Ta có \(\overline{abc}=13\left(a+b+c\right)\)
\(\Rightarrow100a+10b+c=13a+13b+13c\\ \Rightarrow87a-3b-12c=0\\ \Rightarrow29a=b+4c\)
Vì \(29a\) lẻ mà \(4c\) chẵn nên b lẻ
Lần lượt thay \(b=1;3;5;7;9\)
Ta thấy có 3 giá trị \(b=1;b=5;b=9\) thì thỏa mãn
Vậy các số cần tìm là \(117;156;195\)
1) Tìm số có 2 chữ số biết rằng nếu lấy số đó chia cho chữ số hàng chục của nó thì được thương là 11 và dư 2.
2) Tìm số có 2 chữ số biết rằng nếu lấy số đó chia cho chữ số hàng đơn vị của nó thì được thương là 12 dư 3 .
3) Tìm số có 2 chữ số biết rằng số đó gấp 9 lần chữ số hàng đơn vị .
4)Tìm số có 2 chữ số đó gấp lên 12 lần chữ sô hàng chục.
5) Tìm số có 2 chữ số biết rằng nếu lấy số đó chia cho tổng các chữ số của nó thì đượcthương là 5 và dư 12.
1)
Gọi số có hai chữ số đó là \(\overline{ab}\)\(\left(0\le b\le9,0< a\le9,a;b\in N\right)\)
Theo bài ra, ta có:
\(\overline{ab}:a=11\)dư \(2\)
\(\Rightarrow\overline{ab}=11.a+2\)
\(\Leftrightarrow a.10+b=a.11+2\)
\(\Leftrightarrow b=a+2\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(1;3\right);\left(2;4\right);\left(3;5\right)\left(4;6\right);\left(5;7\right);\left(6;8\right);\left(7;9\right)\right\}\)
Vậy \(\overline{ab}\in\left\{13;24;35;46;57;68;79\right\}.\)
2)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:b=12\)dư \(3\)
\(\Rightarrow\overline{ab}=12.b+3\)
\(\Rightarrow a.10+b=b.12+3\)
\(\Rightarrow a.10=b.11+3\)
Do \(a.10⋮10\)mà \(3:10\)dư \(3\)\(\Rightarrow b.11:10\)dư \(7\)
\(\Rightarrow b=7\)
\(\Rightarrow a.10=7.11+3\)
\(\Rightarrow a.10=80\)
\(\Rightarrow a=80:10=8\)
Vậy số đó là \(87.\)
3)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:b=9\)
\(\Rightarrow a.10+b=b.9\)
\(\Rightarrow a.10=b.8\)
\(\Leftrightarrow5.a=4.b\)
\(\Rightarrow\hept{\begin{cases}a=4\\b=5\end{cases}}\)
Vậy số đó là \(45.\)
4)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:a=12\)
\(\Rightarrow a.10+b=a.12\)
\(\Rightarrow b=2.a\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(1;2\right);\left(2;4\right);\left(3;6\right);\left(4;8\right)\right\}\)
Vậy \(\overline{ab}\in\left\{12;24;36;48\right\}.\)
5)
Gọi số có hai chữ số đó là \(\overline{ab}\)
Theo bài ra, ta có:
\(\overline{ab}:\left(a+b\right)=5\)dư \(12\) \(\Rightarrow a+b>12\)( * )
\(\Rightarrow\overline{ab}=5.\left(a+b\right)+12\)
\(\Rightarrow10.a+b=5.a+5.b+12\)
\(\Rightarrow5a=4b+12\)
Do \(4b⋮4;12⋮4\Rightarrow5a⋮4\)
Mà \(\left(5,4\right)=1\Rightarrow a⋮4\)
\(\Rightarrow a\in\left\{4;8\right\}\)
+ Nếu \(a=4\):
\(\Rightarrow5.4=b.4+12\)
\(\Rightarrow5=b+3\)
\(\Rightarrow b=5-3=2\)
Khi đó : \(a+b=4+2< 12\)( mâu thuẫn với (*) )
+ Nếu \(a=8\):
\(5.8=4.b+12\)
\(\Rightarrow5.2=b+3\)
\(\Rightarrow b=10-3=7\)
Khi đó : \(8+7=15>12\)( hợp lý với ( * ) )
Vậy số đó là \(87.\)
Bài 1 bạn có thể làm rõ ra cho mình được ko