Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
QH
Xem chi tiết
HN
7 tháng 3 2016 lúc 18:53

Câu này làm thế nào nhỉ.Mình cũng đang thắc mắc.Gần thi huyện rồi

Bình luận (0)
TC
8 tháng 3 2016 lúc 20:22

28 nhé bạn

Bình luận (0)
E2
Xem chi tiết
HN
28 tháng 7 2016 lúc 8:42

Các sô thực dương là j vậy bạn

Bình luận (0)
NT
14 tháng 12 2019 lúc 22:03

các số thực dương là các số > 0 ( kể cả phân số , số thập phân , số vô tỉ )

Bình luận (0)
 Khách vãng lai đã xóa
TA
2 tháng 5 2020 lúc 0:10

ê mấy bọn ngu

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
NM
8 tháng 8 2019 lúc 21:18

chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*

Bình luận (0)
LN
9 tháng 3 2021 lúc 19:23
Tôi nghĩ Minh nói đúng đấy,bạn đủ thông minh để làm đấy
Bình luận (0)
 Khách vãng lai đã xóa
KH
9 tháng 3 2021 lúc 19:47

CŨNG ĐÚNG ĐẤY

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
NL
25 tháng 10 2021 lúc 10:38

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

Bình luận (1)
NL
25 tháng 10 2021 lúc 10:43

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

Bình luận (1)
DH
Xem chi tiết
H24
19 tháng 5 2021 lúc 20:18

Áp dụng BĐT bunhiacop ski dạng phân thức(cauchy schwart)

`=>A>=(a+b+c)^2/(a+b+b+c+a+c)`

`<=>A>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2`

Mà `a+b+c=6`

`=>A>=6/2=3`

Dấu "=" xảy ra khi `a=b=c=2`

Bình luận (2)
WH
19 tháng 5 2021 lúc 20:20

Câu hỏi của Thu Nguyễn - Toán lớp 9 - Học trực tuyến OLM

tham khảo ^^

Bình luận (3)
H24
Xem chi tiết
NH
Xem chi tiết
HT
Xem chi tiết
DL
Xem chi tiết
NL
17 tháng 4 2022 lúc 12:46

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{2b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\)

\(M=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)

\(=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3}{xyz}=\dfrac{-z^3-3xy\left(-z\right)+z^3}{xyz}\)

\(=\dfrac{3xyz}{xyz}=3\)

 

Bình luận (0)