tìm số đo mỗi tam giác ABC biết số đo góc tỉ lệ với 1; 2; 3 , khi đó tam giác ABC là tam giác gì
Tìm số đo mỗi góc của tam giác ABC biết số đo ba góc có tỉ lệ là 1:2:3. Khi đó tam giác ABC là tam giác gì?
tam giác vuông( có cần giải chi tiết ko vậy)
Tìm số đo mỗi góc của tam giác ABC ,biết số đo ba góc đó tỉ lệ với 1;2;3 . Khi đó tam giác ABC la tam giác gì
Gọi số đo ba góc của tam giác ABC lần lượt là A,B,C
Theo đề bài ,ta có:
A/1=B/2=C/3 và A+B+C=180
=>A/1=B/2=C/3=(A+B+C)/(1+2+3)=(A+B+C)/6=180/6=30
Do đó:
+)A/1=30=>A=30
+)B/2=30=>B=60
+)C/3=30=>C=90
Vậy số đo ba góc của tam giác ABC lần lượt là :30,60,90
Vậy tam giác ABC là tam giác vuông
tìm số đo mỗi góc của tam giác ABC biết số đo 3 góc có tỉ lệ là 1 : 2 : 3 . Khi đó tam giác ABC là tam giác gì ?
Tìm số đo mỗi góc tam giác abc biết số đo ba góc có tỉ lệ là 1,2,3 khi đó tam giác abc là tam giác gì?
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
Ta có: Số đo ba góc của ΔABC lần lượt tỉ lệ với 1;2;3(gt)
nên \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\dfrac{180^0}{6}=30^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{A}}{1}=30^0\\\dfrac{\widehat{B}}{2}=30^0\\\dfrac{\widehat{C}}{3}=30^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=30^0\\\widehat{B}=60^0\\\widehat{C}=90^0\end{matrix}\right.\)
Vậy: ΔABC là tam giác vuông
Tìm số đo mỗi góc của tam giác ABC biết số đo 3 góc của tam giác đó tỉ lệ là 1;2;3
Theo đề bài ta có: \(\frac{A}{1}\); \(\frac{B}{2}\); \(\frac{C}{3}\)và A+B+C=180
\(\frac{A}{1}+\frac{B}{2}+\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\frac{A}{1}=30\Rightarrow A=30\cdot1=30^0\)
\(\Rightarrow\frac{B}{2}=30\Rightarrow B=30\cdot2=60^0\)
\(\Rightarrow\frac{C}{3}=30\Rightarrow C=30\cdot3=90^0\)
Gọi số đo 3 góc của tam giác lần lượt là: x,y,z và x,y,z phải là số dương.
Theo đề bài ta có
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) và x+y+z=180
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
\(\frac{x}{1}=30.1=30\)\(\frac{x}{2}=30.2=60\)\(\frac{x}{3}=30.3=90\)Vậy số đo các góc của tam giác lần lượt là: 30,60,90.
mk nhé bạn ^...^ ^_^
Các bạn ơi giải bài toán này giúp mình với nhé !
Bài 1 :
a) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ thận với 3 , 11 , 16 . Tìm số đo các góc của tam giác ABC .
b) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ nghịch với 15 , 16 , 48 . Tìm số đo các góc của tam giác ABC .
c) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ thuân với 5 , 7 , 8 . Tìm số đo các góc của tam giác ABC.
d) Cho tam giác ABC cósố đo ba góc A , B , C tỉ lệ nghịch với 4 , 4, 3 . Tìm số đo các gọc của tam giác ABC .
mình rất cần bài này để chuẩn bị đi học !
bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó
1.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ nghịch vs 3;4;6.Tính số đo các góc của tam giác ABC.
2.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ thuận vs 3;4;5.Tính số đo các góc của tam giác ABC.
tìm số đo mỗi góc của tam giác ABC biết số đo 3 góc co tỉ lệ là 1;2;3 . Khi đó tam giác ABC là tam giác gì?
Gọi số đo của 3 tam giác đó lần lượt là a, b, c
Ta có :
a + b + c = 1800 (định lí tổng 3 góc of 1 tam giác )
a/1 = b/2 = c/3
Theo t,c dãy tỉ số bằng nhau ta có :
a/1 = b/2 = c/3 = a + b + c/ 1 + 2 + 3 = 1800/6 = 300
Suy ra :
+) a/1 = 30 => a = 30
+) b/2 = 30 => b = 60
+) c/3 = 30 => c = 90
Vậy tam giác đó là tam giác vuông
Theo bài ra, ta có:\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)=\(\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}\)=\(\frac{180^0}{6}\)=300
Do đó: \(\widehat{A}=30^0.1=30^0\)
\(\widehat{B}=30^0.2=60^0\)
\(\widehat{C}=30^0.3=90^0\)
Vì tam giác ABC có góc C=900
Nên tam giác ABC là tam giác vuông tại C
Gọi số đo của tam giác là a , b , c
Theo đề bài ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\) và \(a+b+c=180\)độ ( Định lý tổng 3 góc của 1 tam giác )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\)\(a=30.1=30\)
\(\Rightarrow\)\(b=30.2=60\)
\(\Rightarrow\)\(c=30.3=90\)
Vì trong tam giác có 1 góc bằng 90 độ nên tam giác đó là tam giác vuông
Tính số đo mỗi góc của tam giác abc biết rằng số đo các góc abc lần lược tỉ lệ với 1,3,5
Gọi số đo của 3 góc tam giác abc là x,y,z (x,y,z \(\ne\)0 )
Vì x,y,z lần lượt tỉ lệ với 1,3,5 nên x,y,z lần lượt là \(\frac{x}{1},\frac{y}{3},\frac{z}{5}\)
Vì tổng tam giác abc = 180o (định lí) nên x + y + z = 180
Áp dụng tính chất dãy tỉ số bằng nhau, ta có\(\frac{x}{1}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{1+3+5}=\frac{180^o}{9}=20^o\)
Do đó, x = 20 . 1 = 20
y = 20 . 3 = 60
z = 20 . 5 = 100
Vậy số đo mỗi góc tam giác abc lần lượt là 20,60,100
Tìm số đo mỗi góc của tam giác ABC , biết các góc A,B,C tỉ lệ với 3,4,5.
Ta có \(\begin{cases}\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15\)
Suy ra \(\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}\)