Những câu hỏi liên quan
NL
Xem chi tiết
LD
17 tháng 6 2017 lúc 19:56

Ta có : |2x - 3| \(\ge0\forall x\in R\)

Suy ra : 1 - |2x - 3| \(\le1\forall x\in R\)

=> Giá trị lớn nhất của biểu thức là 1 khi x = 3/2 

Bình luận (0)
NT
4 tháng 8 2018 lúc 21:06

Hãy tích cho tui đi

khi bạn tích tui

tui không tích lại bạn đâu

THANKS

Bình luận (0)
TS
Xem chi tiết
HA
Xem chi tiết
LF
18 tháng 9 2016 lúc 7:20

Ta có:

\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\ge x-1+0+3-x=2\)

\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)

Vậy MinB=2013 khi x=2

 

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 5 2019 lúc 5:57

Đáp án A.

Bình luận (0)
NV
Xem chi tiết
XO
23 tháng 7 2020 lúc 16:15

Ta có \(\hept{\begin{cases}\left|x-1,5\right|\ge0\forall x\\\left|2x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x-1,5\right|+\left|2x-3\right|-7\ge-7\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,5=0\\2x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=1,5\end{cases}}\Rightarrow x=1,5}\)

Vậy GTNN của A là - 7 khi x = 1,5

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
22 tháng 11 2018 lúc 7:31

Đáp án A.

Phương pháp:

Từ  z = z ¯ + 4 - 3 i  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB

Cách giải: Gọi z = x + ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.

Ta có:  dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  và A B → = 3 ; - 4

Phương trình đường trung trực của AB là

Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 8 2019 lúc 7:49

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 11 2019 lúc 6:27

Đáp án A.

Phương pháp:

Từ  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z=x+yi 

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có: 

 nhỏ nhất

 

Cách giải: Gọi z=x+ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có: 

 nhỏ nhất.

Ta có: 

Dấu bằng xảy ra 

 M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  

Phương trình đường trung trực của AB là

 

Để  

Tọa độ điểm M là nghiệm của hệ phương trình 

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 12 2018 lúc 9:26

Bình luận (0)