Những câu hỏi liên quan
LA
Xem chi tiết
LA
20 tháng 7 2016 lúc 19:10

Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64

A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)

Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1

1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2

1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2

1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2

Vậy A > 4

Bình luận (0)
LA
17 tháng 7 2016 lúc 19:56

Xin ai giải hộ cái

Bình luận (0)
NP
6 tháng 7 2017 lúc 9:36

Ta có A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/64

          A = 1 + (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + ... + 1/8) + (1/9 + 1/10 + 1/11 + ... + 1/16) + (1/17 + 1/18 + 1/19 + ... + 1/32) + (1/33 + 1/34 + 1/35 + ... + 1/64)

=> A > 1 +  (1/2 + 1/4.2) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32

     A > 1 + 1 + 1/2 + 1/2 + 1/2 + 1/2

    A > 4 (DPCM).

Bình luận (0)
TR
Xem chi tiết
TR
5 tháng 5 2017 lúc 20:53

giúp mình nhé

Bình luận (0)
MV
7 tháng 5 2017 lúc 8:34

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}+\dfrac{1}{64}\\ =\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{64}\right)\)

Ta thấy:

\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)

\(\dfrac{1}{5};\dfrac{1}{6};\dfrac{1}{7}\) lớn hơn \(\dfrac{1}{8}\)

\(\dfrac{1}{9};\dfrac{1}{10};...;\dfrac{1}{15}\) lớn hơn \(\dfrac{1}{16}\)

\(\dfrac{1}{17};\dfrac{1}{18};...;\dfrac{1}{31}\) lớn hơn \(\dfrac{1}{32}\)

\(\dfrac{1}{33};\dfrac{1}{34};...;\dfrac{1}{63}\) lớn hơn \(\dfrac{1}{64}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)

Vậy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)(ĐPCM)

Bình luận (0)
KJ
Xem chi tiết
NH
Xem chi tiết
NH
4 tháng 3 2016 lúc 18:47

các bạn giúp mình nhé, người làm nhanh và đúng sẽ được mình k nhé

Bình luận (0)
NN
7 tháng 4 lúc 19:26

Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64

A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)

Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1

1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2

1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2

1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2

Vậy A > 4

Bình luận (0)
NL
Xem chi tiết
MP
13 tháng 4 2019 lúc 16:04

A=1+(1/2 + 1/3 + 1/4)+(1/5 + 1/6 + 1/7 + 1/8)+(1/9+...+1/16)+(1/17+...+1/32)+(1/33+...+1/64)

A>1+(1/2 + 1/4 + 1/4)+(1/8+ 1/8+ 1/8+ 1/8)+(1/16+1/16+...+1/16)+(1/64+...+1/64)

A>1 + 1 + 1/2 + 1/2 + 1/2+ 1/2

A>4

Bình luận (2)
LT
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
NK
Xem chi tiết
VN
27 tháng 12 2017 lúc 18:43

Ta có : 

A= 1+ 1/2 + 1/3 +1/4 + ...+ 1/63 + 1/64 

   =1 + ( 1/2 + 1/3 + 1/4 ) + ( 1/5 +1/6 + ..+1/8 ) + ( 1/9 + 1/10 + ..+ 1/16 ) + ( 1/17  + 1/18 + ...+ 1/32 ) + ( 1/33 + 1/34 + ...+1/63 + 1/64 ) 

=> A > 1 + ( 1/2 + 1/4.2 ) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32 

     A > 1 + 1/2 + 1/2 + 1/2 +1/2 

  =>A > 4

Bình luận (0)
NK
27 tháng 12 2017 lúc 18:50

thanks

Bình luận (0)