Đại số lớp 6

TR

Chứng tỏ rằng: 1/2+1/3+1/4+...+1/63+1/64>3

TR
5 tháng 5 2017 lúc 20:53

giúp mình nhé

Bình luận (0)
MV
7 tháng 5 2017 lúc 8:34

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}+\dfrac{1}{64}\\ =\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{64}\right)\)

Ta thấy:

\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)

\(\dfrac{1}{5};\dfrac{1}{6};\dfrac{1}{7}\) lớn hơn \(\dfrac{1}{8}\)

\(\dfrac{1}{9};\dfrac{1}{10};...;\dfrac{1}{15}\) lớn hơn \(\dfrac{1}{16}\)

\(\dfrac{1}{17};\dfrac{1}{18};...;\dfrac{1}{31}\) lớn hơn \(\dfrac{1}{32}\)

\(\dfrac{1}{33};\dfrac{1}{34};...;\dfrac{1}{63}\) lớn hơn \(\dfrac{1}{64}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)

Vậy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)(ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
VD
Xem chi tiết
QL
Xem chi tiết
NN
Xem chi tiết
LS
Xem chi tiết
VT
Xem chi tiết
LB
Xem chi tiết
LY
Xem chi tiết
NL
Xem chi tiết