Những câu hỏi liên quan
DM
Xem chi tiết
TA
Xem chi tiết
LD
Xem chi tiết
H24
12 tháng 1 2022 lúc 18:51

(x2 + 4xy + 4y2) + xy + 2y2 + x + 2y = 2

(x + 2y)2 + (x + 2y)(y + 1) = 2

(x + 2y)(x + 3y + 1) = 2

TH1: \(\hept{\begin{cases}x+2y=1\\x+3y+1=2\end{cases}}\)<=>\(\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)

TH2: \(\hept{\begin{cases}x+2y=2\\x+3y+1=1\end{cases}}\)<=> \(\hept{\begin{cases}x=6\\y=-2\end{cases}}\)(thỏa mãn)

TH3: \(\hept{\begin{cases}x+2y=-1\\x+3y+1=-2\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)(thỏa mãn)

TH4: \(\hept{\begin{cases}x+2y=-2\\\text{x+3y+1=-1}\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=0\end{cases}}\)(thỏa mãn)

Bình luận (1)
 Khách vãng lai đã xóa
CT
Xem chi tiết
H24
Xem chi tiết
HV
Xem chi tiết
GH
21 tháng 6 2023 lúc 15:55

a)

Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$

Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$

Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.

Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:

$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$

Vậy kết quả là $E=-\frac{5}{3}$.

Bình luận (0)
GH
21 tháng 6 2023 lúc 16:06
Bình luận (0)
GH
21 tháng 6 2023 lúc 16:09

đặt $a=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}$, $b=\sqrt[3]{3-2\sqrt{2}}}$

Khi đó:
$$(a+b)^3=a^3+b^3+3ab(a+b)$$
$$a^3+b^3=\left(\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\right)^3+\left(\sqrt[3]{3-2\sqrt{2}}\right)^3= \frac{1}{3-2\sqrt{2}}+(3-2\sqrt{2})=4$$
$$ab=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\cdot\sqrt[3]{3-2\sqrt{2}}=\sqrt[3]{(3-2\sqrt{2})(3+2\sqrt{2})}=\sqrt[3]{1}=1$$
Do đó, ta có:
$$(a+b)^3=4+3ab(a+b)=4+3(a+b)$$
Vậy $2x^3=2(a+b)^3=8+6(a+b)$ và $6x=6(a+b)$.
Thay vào biểu thức $P$, ta được:
$$P=\left(2x^3-6x+2008\right)^{2021}=\left(8+6(a+b)-6(a+b)+2008\right)^{2021}=2016^{2021}$$
Vậy kết quả là $P=2016^{2021}$.

Bình luận (0)
PA
Xem chi tiết
TD
10 tháng 3 2020 lúc 15:26

\(2x^2+2y^2+3x-6y=5xy-7\)

\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)

\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)

\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)

\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)

vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)

Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7

Tới đây bạn tự làm nhé

Bình luận (0)
 Khách vãng lai đã xóa
NG
Xem chi tiết
NL
10 tháng 11 2019 lúc 14:59

1. x+y=xy

=> x-xy+y=0

=> x(1-y)+y=0

=> x(1-y)+y -1 =-1

=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1

*    1-y=-1 => y=2

      x-1=1=> x=2

*     1-y =1 => y=0

       x-1=-1 => x=0

Bình luận (0)
 Khách vãng lai đã xóa
QB
Xem chi tiết
NT
29 tháng 7 2023 lúc 22:26

a: M=3/4xy^2-2x^2y+2y^3-1/3x^2+1/2x^2y-5xy^2+x^3-y^3

=y^3-1/3x^2+x^3-17/4xy^2-3/2x^2y

Bình luận (0)