Những câu hỏi liên quan
PB
Xem chi tiết
CT
18 tháng 1 2018 lúc 3:36

Giải bài 3 trang 179 sgk Đại số 11 | Để học tốt Toán 11

Thử lại: Trong 3 nghiệm trên thì nghiệm Giải bài 3 trang 179 sgk Đại số 11 | Để học tốt Toán 11 không thỏa mãn

Bình luận (0)
NN
Xem chi tiết
HP
5 tháng 9 2021 lúc 10:37

1.

\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

Bình luận (0)
HP
5 tháng 9 2021 lúc 10:41

2.

\(\left|cosx-sinx\right|+2sin2x=1\)

\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)

\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)

\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
HP
5 tháng 9 2021 lúc 10:50

3.

\(2sin2x-3\sqrt{6}\left|sinx+cosx\right|+8=0\)

\(\Leftrightarrow2\left(sinx+cosx\right)^2-3\sqrt{6}\left|sinx+cosx\right|+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|sinx+cosx\right|=\sqrt{6}\left(vn\right)\\\left|sinx+cosx\right|=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left|sin\left(x+\dfrac{\pi}{4}\right)\right|=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\pm\dfrac{\sqrt{3}}{2}\)

...

Bình luận (0)
ML
Xem chi tiết
NC
11 tháng 9 2021 lúc 19:42

sin2x + 1 - 2sin2x + sinx + cosx = 0

⇔ sin2x + cos2x + sinx + cosx = 0

⇔ \(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\)

⇔ \(sin\left(2x+\dfrac{\pi}{4}\right)+sin\left(x+\dfrac{\pi}{4}\right)=0\)

⇔ \(2sin\left(\dfrac{3x}{2}+\dfrac{\pi}{4}\right).cos\dfrac{x}{2}=0\)

⇔ \(\left[{}\begin{matrix}sin\left(3x+\dfrac{\pi}{4}\right)=0\\cos\dfrac{x}{2}=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k.\dfrac{\pi}{3}\\x=\pi+k.2\pi\end{matrix}\right.\) , k ∈ Z

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 10 2018 lúc 16:14

=cos2x+3

=cos2x+3 (*)

Ta có: 3( sin x – cosx) – 4 ( sin3x  - cos3x)

         =  3(sinx – cosx) – 4(sinx – cosx ).(sin2x + sinx. cosx+ cos2 x)

         = 3( sin x – cosx) – 4(sinx – cosx).(1+ sinx. cosx)

         = (sin x – cosx) . ( 3- 4 – 4sinx. cosx)

        = ( sinx – cosx). (- 1- 4sinx. cosx)  = - ( sinx – cosx)( 1+ 2sin2x)

Khi đó (*) trở thành

 

Bình luận (0)
LL
Xem chi tiết
KR
3 tháng 8 2019 lúc 9:49

cos2x = 1- sin^x 
sin2x= 2sinxcosx 

Nhóm lại bình thường và giải thôi

Bình luận (0)
NN
Xem chi tiết
HP
3 tháng 9 2021 lúc 0:32

1.

\(3sin^22x-2sin2x.cos2x-4cos^22x=2\)

\(\Leftrightarrow-\dfrac{3}{2}\left(1-2sin^22x\right)-2sin2x.cos2x-2\left(2cos^22x-1\right)=\dfrac{5}{2}\)

\(\Leftrightarrow sin4x+\dfrac{7}{2}cos4x=-\dfrac{5}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{53}}{2}\left(\dfrac{2}{\sqrt{53}}sin4x+\dfrac{7}{\sqrt{53}}cos4x\right)=-\dfrac{5}{2}\)

\(\Leftrightarrow sin\left(4x+arccos\dfrac{2}{\sqrt{53}}\right)=-\dfrac{5}{\sqrt{53}}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+arccos\dfrac{2}{\sqrt{53}}=arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\\4x+arccos\dfrac{2}{\sqrt{53}}=\pi-arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}+\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}-\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\end{matrix}\right.\)

Bình luận (2)
HP
3 tháng 9 2021 lúc 0:38

2.

\(2\sqrt{3}cos^2x+6sinx.cosx=3+\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}\left(2cos^2x-1\right)+6sinx.cosx=3\)

\(\Leftrightarrow\sqrt{3}cos2x+3sin2x=3\)

\(\Leftrightarrow2\sqrt{3}\left(\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x\right)=3\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
HP
3 tháng 9 2021 lúc 0:43

3.

\(3cos^24x+5sin^24x=2-2\sqrt{3}sin4x.cos4x\)

\(\Leftrightarrow4cos^24x+4sin^24x-cos^24x+sin^24x=2-2\sqrt{3}sin4x.cos4x\)

\(\Leftrightarrow4-cos8x=2-\sqrt{3}sin8x\)

\(\Leftrightarrow cos8x-\sqrt{3}sin8x=2\)

\(\Leftrightarrow\dfrac{1}{2}cos8x-\dfrac{\sqrt{3}}{2}sin8x=1\)

\(\Leftrightarrow cos\left(8x+\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow8x+\dfrac{\pi}{3}=k2\pi\)

\(\Leftrightarrow x=-\dfrac{\pi}{24}+\dfrac{k\pi}{4}\)

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 8 2017 lúc 5:16

Phương trình sinx = 1/2 không có nghiệm  x ∈   - π 2 ;   0

Nên  để phương trình đã cho có  nghiệm  x ∈   - π 2 ;   0  khi và chỉ khi phương trình sinx = m có nghiệm trên khoảng đó. Kết hợp với (*) suy ra  -1< m< 0

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 12 2017 lúc 11:27

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 4 2017 lúc 10:06

Bình luận (0)