Giải phương trình
3(x+5)(x+6)(x+7)=8x
a)Giải bất phương trình
3(x+7)-2x+5>0 x=2/18 - x+3/8 < x-1/9 - x-4/24
b)Giải pt
3x+2+|x+5|=0
giúp mk với ;-;
a: 3(x+7)-2x+5>0
=>3x+21-2x+5>0
=>x+26>0
=>x>-26
Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)
=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)
=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)
=>\(4x+8-9x-27< 8x-8-3x+12\)
=>-5x-19<5x+4
=>-10x<23
=>\(x>-\dfrac{23}{10}\)
b: \(3x+2+\left|x+5\right|=0\left(1\right)\)
TH1: x>=-5
(1) trở thành: 3x+2+x+5=0
=>4x+7=0
=>\(x=-\dfrac{7}{4}\left(nhận\right)\)
TH2: x<-5
=>x+5<0
=>|x+5|=-x-5
Phương trình (1) sẽ trở thành:
\(3x+2-x-5=0\)
=>2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)
Giải phương trình
3) x3 - 4x = 0
4) 4x - 3( x - 2) = 7 - x
\(3,x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
\(\left(x-2\right)x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)
\(4,4x-3\left(x-2\right)=7-x\)
\(4x-3x+6=7-x\)
\(x+6=7-x\)
\(2x=1\)
\(x=\dfrac{1}{2}\)
\(3\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
4 \(\Leftrightarrow4x-3x+6-7+x=0\Leftrightarrow x=\dfrac{1}{2}\)
3. \(x^3-4x=0\\ \Leftrightarrow x\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy PT có tập nghiệm là S= { 0 ; 2 }
4. \(4x-3\left(x-2\right)=7-x\\ \Leftrightarrow4x-3x+6=7-x\\ \Leftrightarrow4x-3x+x=7-6\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)
Vậy PT có tập nghiệm S = { \(\dfrac{1}{2}\) }
Giải phương trình
3) |x - 2| = 3 - 5x
4) 2 ( 4x - 7) = 3(x + 1) +18
3, đk : x =< 3/5
TH1 : \(x-2=3-5x\Leftrightarrow6x=5\Leftrightarrow x=\dfrac{5}{6}\)(ktm)
TH2 : \(x-2=5x-3\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)(tm)
4, \(\Leftrightarrow8x-14=3x+21\Leftrightarrow5x=35\Leftrightarrow x=7\)
Bài 3:
\(\Leftrightarrow x-2=3-5x\\ \Leftrightarrow x+5x=3+2\\ \Leftrightarrow6x=5\\ \Leftrightarrow x=\dfrac{5}{6}\)
Vậy \(x=\dfrac{5}{6}\)
Bài 4:
\(\Leftrightarrow8x-14=3x+3+18\)
\(\Leftrightarrow8x-3x=3+18+14\\ \Leftrightarrow5x=35\\ \Leftrightarrow x=\dfrac{35}{5}=7\)
Vậy x = 7
3. \(x-2=3-5x\\ \Leftrightarrow x+5x=3+2\\ \Leftrightarrow6x=5\\ \Leftrightarrow x=\dfrac{5}{6}\)
Vậy PT có tập nghiệm S = { \(\dfrac{5}{6}\)}
4. \(2\left(4x-7\right)=3\left(x+1\right)+18\\ \Leftrightarrow8x-14=3x+3+18\\ \Leftrightarrow8x-3x=3+18+14\\ \Leftrightarrow5x=35\\ \Leftrightarrow x=7\)
Vậy PT có tập nghiệm S = { 7 }
giải hệ phương trình
3(x-1)+2(y-3)=-5
(x+y-1)2=(x+y)2
$\begin{cases}3(x-1)+2(y-3)=-5\\(x+y-1)^2=(x+y)^2\\\end{cases}$
`<=>` $\begin{cases}3x-3+2y-6=-5\\(x+y-x-y+1)(x+y+x+y-1)=0\\\end{cases}$
`<=>` $\begin{cases}3x+2y=4\\1.(2x+2y-1)=0\\\end{cases}$
`<=>` $\begin{cases}3x+2y=4\\2x+2y=1\\\end{cases}$
`<=>` $\begin{cases}3x-2x=4-1=3\\2y=1-2x\\\end{cases}$
`<=>` $\begin{cases}x=3\\y=\dfrac{1-2x}{2}=-\dfrac52\\\end{cases}$
Vậy HPT có nghiệm `x,y=(3,-5/2)`
giải phương trình
3-x≥0
giải phương trình (8x+5) x (8x+7) x (8x+6)^2=72
Giúp mk nha mn!
\(\left(8x+5\right)\left(8x+7\right)\left(8x+6\right)^2=72\)
Đặt \(8x+5=t\left(t\ge0\right)\)
\(t\left(t+2\right)\left(t+1\right)^2-72=0\)
\(\Leftrightarrow t\left(t+1\right)\left(t+2\right)\left(t+1\right)-72=0\)
\(\Leftrightarrow\left(t^2+t\right)\left(t^2+3t+2\right)-72=0\)
\(\Leftrightarrow t^4+3t^3+2t^2+t^3+3t^2+2t-72=0\)
\(\Leftrightarrow t^4+4t^3+5t^2+2t-72=0\)
\(\Leftrightarrow\left(t^2+2t+9\ne0\right)\left(t+4\right)\left(t-2\right)=0\Leftrightarrow t=-4;2\)
hay \(8x+5=-4\Leftrightarrow x=-\frac{9}{8}\)( trường hợp 1 )
\(8x+5=2\Leftrightarrow x=-\frac{3}{8}\)( trưởng hợp 2 )
Vậy tập nghiệm của phương trình là S = { -9/8 ; -3/8 }
\(\left(8x+5\right)\cdot\left(8x+7\right)\cdot\left(8x+6\right)^2=72\)
Đặt \(t=8x+6\)
\(Pt\Leftrightarrow\left(t-1\right)\left(t+1\right)t^2-72=0\)
\(\Leftrightarrow\left(t^2-1\right)t^2-72=0\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\Leftrightarrow\orbr{\begin{cases}t^2=9\\t^2=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}8x+6=3\\8x+6=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{8}\\x=-\frac{9}{8}\end{cases}}}\)
Vậy....
( 8x + 5 )( 8x + 7 )( 8x + 6 )2 = 72
<=> ( 64x2 + 96x + 35 )( 64x2 + 96x + 36 ) - 72 = 0
Đặt t = 64x2 + 96x + 35
pt <=> t( t + 1 ) - 72 = 0
<=> t2 + t - 72 = 0
<=> t2 - 8t + 9t - 72 = 0
<=> t( t - 8 ) + 9( t - 8 ) = 0
<=> ( t - 8 )( t + 9 ) = 0
<=> ( 64x2 + 96x + 35 - 8 )( 64x2 + 96x + 35 + 9 ) = 0
<=> ( 64x2 + 96x + 27 )( 64x2 + 96x + 44 ) = 0
<=> 4( 64x2 + 24x + 72x + 27 )( 16x2 + 24x + 11 ) = 0
<=> 4[ 8x( 8x + 3 ) + 9( 8x + 3 ) ]( 16x2 + 24x + 11 ) = 0
<=> 4( 8x + 3 )( 8x + 9 )( 16x2 + 24x + 11 ) = 0
<=> 8x + 3 = 0 hoặc 8x + 9 = 0
[ do 16x2 + 24x + 11 = ( 16x2 + 24x + 9 ) + 2 = ( 4x + 3 )2 + 2 ≥ 2 ∀ x ]
<=> x = -3/8 hoặc x = -9/8
Vậy phương trình có tập nghiệm S = { -3/8 ; -9/8 }
giải bất phương trình sau
a, 3x+5 ≤ 4x-9
b, 6 -2x < 6-x
c, 7 (x-1) +5>-3x
d, -(8x+2) ≤ 7 (1-x)
a: Ta có: \(3x+5\le4x-9\)
\(\Leftrightarrow-x\le-14\)
\(\Leftrightarrow x\ge14\)
b: Ta có: \(6-2x< 6-x\)
\(\Leftrightarrow-x< 0\)
hay x>0
c: Ta có: \(7\left(x-1\right)+5>-3x\)
\(\Leftrightarrow7x-7+5+3x>0\)
\(\Leftrightarrow10x>2\)
hay \(x>\dfrac{1}{5}\)
Giải phương trình
\(3\left(x+5\right)\left(x+6\right)\left(x+7\right)=8x\)
3(x+5)(x+6)(x+7)=8(x+6)-48 (1)
Đặt x+6=t
(1) <=> 3t(t-1)(t+1)=8t-48
<=> 3t3-11t+48=0
<=> (x+3)(3x2-9x+16) =0
Từ sau tự làm đi nghại ghi
giải phương trình: x-1/2x^2-4x - 7/8x = 5-x/4x^2-8x - 1/8x-16
Trả lời:
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)\(\left(đkxđ:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x-1}{2x\left(x-2\right)}-\frac{7}{8x}=\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{2\left(5-x\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}\)
\(\Rightarrow4\left(x-1\right)-7\left(x-2\right)=2\left(5-x\right)-x\)
\(\Leftrightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow10-3x=10-3x\)
\(\Leftrightarrow-3x+3x=10-10\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy S = R với \(x\ne0;x\ne2\)