B,Chứng tỏ rằng:A=3^1+3^2+3^3+.....+3^60 chia hết cho 13
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
14. Cho B = 3 + 32 + 33 + …. + 360. Chứng tỏ rằng:
a) B chia hết cho 4;
b) B chia hết cho 13.
a) B\(=\) 3 + 32 + 33 + ... + 360
\(=\)(3+32)+(33+34)+...+(359+360)
\(=\)3(1+3)+33(1+3)+...+359(1+3)
\(=\)(3+1)(3+33+...+359)
\(=\)4(3+33+...+359)⋮4
⇒B⋮4
b) B\(=\)(3+32+33)+...+(358+359+360)
\(=\)30(3+32+33)+...+357(358+359+360)
\(=\)3+32+33(30+33+36+...+357)
\(=\)39(30+33+36+...+357)⋮13
⇒ B⋮13
Bài 3:Chứng tỏ rằng:
a) Nếu (abc-def) chia hết cho 13 thì abcdef chia hết cho 13
Cho B=3+3^ 2 +3^ 3 +***+3^ 60 Chứng tỏ rằng B chia hết cho 13 .
Số số hạng của B:
60 - 1 + 1 = 60 (số)
Do 60 chia hết cho 3 nên ta nhóm các số hạng của B thành nhóm 3 số hạng như sau:
B = 3 + 3² + 3³ + ... + 3⁶⁰
= (3 + 3² + 3³) + (3⁴ + 3⁵ + 3⁶) + ... + (3⁵⁸ + 3⁵⁹ + 3⁶⁰)
= 3.(1 + 3 + 3²) + 3⁴.(1 + 3 + 3²) + ... + 3⁵⁸.(1 + 3 + 3²)
= 3.13 + 3⁴.13 + ... + 3⁵⁸.13
= 13.(3 + 3⁴ + ... + 3⁵⁸) ⋮ 13
Vậy B ⋮ 13
Cho B=3+3^2+3^3+...+3^120.chứng ming rằng:
a) B chia hết cho 4
b) B chia hết cho 13
a) \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{199}\left(1+3\right)\)
\(=3.4+3^3.4+3^{199}.4=4\left(3+3^3+...+3^{199}\right)⋮4\)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{198}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{198}.13=13\left(3+3^4+...+3^{198}\right)⋮13\)
a)A=2+2^2+2^3+2^4+...+2^60 chứng tỏ A chia hết cho 3, 7 ,15
b)B=3+3^2+3^3+3^4+...+3^1991 chứng tỏ B chia hết cho 13 và 41
Chứng tỏ :
a) C = 1 + 5 + 5^2 + 5^3 + ... + 5^403 + 5^404 chia hết cho 31.
b) E = 3 + 3^2 + 3^3 + ... + 3^60 vừa chia hết cho 4 , vừa chia hết cho 13.
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5
b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60
c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7
con khong biet
chứng tỏ a+3^1+3^2+3^3+...+3^60 chia hết chi 13
\(A=3^1+3^2+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{58}\cdot\left(1+3+9\right)\)
\(A=3\cdot13+3^4\cdot13+...+3^{58}\cdot13\)
\(A=13\cdot\left(3+3^4+...+3^{58}\right)\)
Mà: \(13\cdot\left(3+3^4+...+3^{58}\right)\) ⋮ 13
\(\Rightarrow A\) ⋮ 13