Những câu hỏi liên quan
NA
Xem chi tiết
NA
Xem chi tiết
NM
14 tháng 12 2021 lúc 20:26

\(ĐK:x^3+27\ne0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)\ne0\\ \Leftrightarrow x\ne-3\left(x^2-3x+9>0\right)\)

Bình luận (0)
H24
14 tháng 12 2021 lúc 20:31

\(A=\dfrac{x^2-2}{x^3+27}\)

A xác định 

\(\Leftrightarrow x^3+27\ne0\\ \Leftrightarrow x^3\ne-27\\ \Leftrightarrow x^3\ne\left(-3\right)^3\\ \Leftrightarrow x\ne-3\)

 

Bình luận (0)
LN
Xem chi tiết
NM
16 tháng 12 2021 lúc 7:07

\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 1 2018 lúc 3:58

Bình luận (0)
DT
Xem chi tiết
H24
11 tháng 1 2021 lúc 18:22

[2x-2=0=>x=1

x-1=0=>x=1

x+1=0=>x=-1

5=0=>x=5

Bình luận (0)
SK
Xem chi tiết
ND
21 tháng 4 2017 lúc 10:38

a) Giá trị phân thức a) được xác định khi 2x2 -6x ≠ 0 ⇒ 2x(x-3) ≠ 0 ⇒ x ≠ 0 và x ≠ 3 b) Giá trị phân thức b) được xác định khi: x2 -3 ≠ 0 ⇒ (x – √3)(x + √3) ≠ 0 ⇒ x ≠ √3 và x ≠ -√3

Bình luận (0)
DQ
18 tháng 12 2017 lúc 20:37

a) \(A\)\(=\dfrac{3x^2+2}{2x^2-6x}=\dfrac{3x^2+2}{2x\left(x-3\right)}\)

Để \(A\) được xác định thì : \(\left\{{}\begin{matrix}2x\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)

b) \(B=\dfrac{5}{x^2-3}=\dfrac{5}{x^2-\left(\sqrt{3}\right)^2}=\dfrac{5}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\)

Để \(B\) được xác định thì : \(\left\{{}\begin{matrix}x+\sqrt{3}\ne0\\x-\sqrt{3}\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-\sqrt{3}\\x\ne\sqrt{3}\end{matrix}\right.\)

Bình luận (0)
NL
Xem chi tiết
MA
2 tháng 2 2022 lúc 15:57

Bài 1: ĐKXĐ:`x + 3 ne 0` và `x^2+ x-6 ne 0 ; 2-x ne 0`

`<=> x ne -3 ; (x-2)(x+3) ne 0 ; x ne2`

`<=>x ne -3 ; x ne 2`

b) Với `x ne - 3 ; x ne 2` ta có:

`P= (x+2)/(x+3)  - 5/(x^2 +x -6) + 1/(2-x)`

`P = (x+2)/(x+3) - 5/[(x-2)(x+3)] + 1/(2-x)`

`= [(x+2)(x-2)]/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`

`= (x^2 -4)/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`

`=(x^2 - 4 - 5 - x-3)/[(x-2)(x+3)]`

`= (x^2 - x-12)/[(x-2)(x+3)]`

`= [(x-4)(x+3)]/[(x-2)(x+3)]`

`= (x-4)/(x-2)`

Vậy `P= (x-4)/(x-2)` với `x ne -3 ; x ne 2`

c) Để `P = -3/4`

`=> (x-4)/(x-2) = -3/4`

`=> 4(x-4) = -3(x-2)`

`<=>4x -16 = -3x + 6`

`<=> 4x + 3x = 6 + 16`

`<=> 7x = 22`

`<=> x= 22/7` (thỏa mãn ĐKXĐ)

Vậy `x = 22/7` thì `P = -3/4`

d) Ta có: `P= (x-4)/(x-2)`

`P= (x-2-2)/(x-2)`

`P= 1 - 2/(x-2)`

Để P nguyên thì `2/(x-2)` nguyên

`=> 2 vdots x-2`

`=> x -2 in Ư(2) ={ 1 ;2 ;-1;-2}`

+) Với `x -2 =1 => x= 3` (thỏa mãn ĐKXĐ)

+) Với `x -2 =2 => x= 4`  (thỏa mãn ĐKXĐ)

+) Với `x -2 = -1=> x= 1` (thỏa mãn ĐKXĐ)

+) Với `x -2 = -2 => x= 0`(thỏa mãn ĐKXĐ)

Vậy `x in{ 3 ;4; 1; 0}` thì `P` nguyên

e) Từ `x^2 -9 =0`

`<=> (x-3)(x+3)=0`

`<=> x= 3` hoặc `x= -3`

+) Với `x=3` (thỏa mãn ĐKXĐ) thì:

`P  = (3-4)/(3-2)`

`P= -1/1`

`P=-1`

+) Với `x= -3` thì không thỏa mãn ĐKXĐ

Vậy với x= 3 thì `P= -1`

Bình luận (0)
CT
Xem chi tiết
KS
14 tháng 12 2018 lúc 21:40

\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

B xác định \(\Leftrightarrow\hept{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}\Leftrightarrow}x\ne\pm3\)

Vậy B xác định \(\Leftrightarrow x\ne\pm3\)

Bình luận (0)
KS
14 tháng 12 2018 lúc 21:42

\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{5x-15+3x+9-5x-3}{\left(x+3\right)\left(x-3\right)}\)

\(B=\frac{3x-9}{\left(x+3\right)\left(x-3\right)}\)

\(B=\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(B=\frac{3}{x+3}\)

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 6 2017 lúc 12:41

Giá trị của phân thức ( 3 x + 2 ) ( 2 x 2 - 6 x ) được xác định khi và chỉ khi  2 x 2 - 6 x ≠ 0

⇔ 2x( x - 3 ) ≠ 0 hay x ≠ 0, x ≠ 3.

Vậy với x ≠ 0, x ≠ 3 thì giá trị của phân thức đã cho xác định.

Bình luận (0)