Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
PS
Xem chi tiết
GL
29 tháng 6 2019 lúc 22:36

 Xét tam giác ABC có I là tâm đường tròn nội tiếp

\(\Rightarrow S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}AB.r+\frac{1}{2}BC.r+\frac{1}{2}CA.r\)

\(=\frac{1}{2}\left(AB+BC+CA\right).r=p.r\)

\(\Rightarrow r=\frac{S_{ABC}}{p}\)

Bình luận (0)
H24
Xem chi tiết
VL
Xem chi tiết
NL
30 tháng 7 2021 lúc 0:33

Gọi D, E, F lần lượt là tiếp điểm của (O) với BC, AC, AB

\(\Rightarrow OD\perp BC\) ; \(OE\perp AC\) ; \(OF\perp AB\)

Và \(OD=OE=OF=R\)

Ta có:

\(S_{ABC}=S_{OAB}+S_{OAC}+S_{OBC}\)

\(=\dfrac{1}{2}OF.AB+\dfrac{1}{2}OE.AC+\dfrac{1}{2}OD.BC\)

\(=\dfrac{1}{2}R.AB+\dfrac{1}{2}R.AC+\dfrac{1}{2}R.BC\)

\(=\dfrac{1}{2}R.\left(AB+AC+BC\right)\)

\(\Rightarrow45=\dfrac{1}{2}R.30\)

\(\Rightarrow R=3\left(cm\right)\)

Bình luận (0)
NL
30 tháng 7 2021 lúc 0:34

undefined

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 5 2018 lúc 3:48

Đáp án là D

Bình luận (0)
CP
Xem chi tiết
PB
Xem chi tiết
CT
31 tháng 12 2018 lúc 7:15

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi O là tâm đường tròn nội tiếp tam giác ABC

Nối OA, OB, OC

Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv

Ta có : S A B C = S O A B + S O A C + S O B C

= (1/2).AB.r + (1/2).AC.r + (1/2).BC.r

= (1/2)(AB + AC + BC).r

Mà AB + AC + BC = 2p

Nên  S A B C = (1/2).2p.r = p.r

Bình luận (0)
TQ
Xem chi tiết
AN
12 tháng 8 2016 lúc 10:35

Gọi I,E,F lần lược là tiếp điểm của đường tròn tâm O nội tiếp với AB,BC,CA ta có OI = OE = OF = r

S​ ABC = S AOB + S BOC + S COA = AB.OI/2 + BC.OE/2 + CA.OF/2 

= (AB + BC + CA).r/2 = pr

Bình luận (0)
HH
9 tháng 8 2020 lúc 20:52

A B C O r

Gọi O là tâm đường tròn nội tiếp tam giác ABC

Nối OA, OB, OC

Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv

Ta có : SABC = SOAB + SOAC + SOBC

 \(=\left(\frac{1}{2}\right)AB.r+\left(\frac{1}{2}\right).AC.r+\left(\frac{1}{2}\right).BC.r\)

    \(=\left(\frac{1}{2}\right)\left(AB+AC+BC\right).r\)

Mà AB + AC + BC = 2p

Nên  \(S_{ABC}=\left(\frac{1}{2}\right).2p.r=p.r\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết