tìm x để
\(x^2-5\sqrt{x}+6\ne0\)
\(B=\frac{2+\sqrt{x}}{x-4\sqrt{x}+4}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{x+2\sqrt{x}}\right)\)
a) Rút Gọn B với \(x>0,x\ne0\)
b) Cho \(H=B\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)\) Tìm x để H đạt GTNN
\(B=\frac{2+\sqrt{x}}{x-4\sqrt{x}+4}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{x+2\sqrt{x}}\right)\)
\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{1}{\sqrt{x}-2}+\frac{6-x}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\)
\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+\left(6-x\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{x\sqrt{x}-8+x+2\sqrt{x}+6\sqrt{x}-12-x\sqrt{x}+2x}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(B=\frac{2+\sqrt{x}}{\left(\sqrt{x}-2\right)^2}:\left(\frac{3x+8\sqrt{x}-20}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(B=\frac{\sqrt{x}\left(2+\sqrt{x}\right)^2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2\left(3x+8\sqrt{x}-20\right)}\)
\(B=\frac{\sqrt{x}\left(2+\sqrt{x}\right)^2}{\left(\sqrt{x}-2\right)\left(3x+8\sqrt{x}-20\right)}\)
tới đây mình bí rồi cậu làm giúp mình đi
mại dzo
1. Cho B=\(\frac{x^3}{x^2-4}\)− \(\frac{x}{x-2}\)− \(\frac{2}{x+2}\)Rút gọn B và tìm \(x\inℕ\)để b là số nguyên
2. Cho \(x\ge0;\) \(x\ne0;\) \(x\ne9;\). Tìm X để \(\left(1-\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\cdot\)\(\left(\frac{1}{1-\sqrt{x}}+\frac{2}{\sqrt{x}-3}\right)=2\)
Gợi ý: \(\left(y=\sqrt{x}\right)\Rightarrow x=y^2\)
3.Cho B=\(\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x-3}}\)rút gọn B và tìm X để \(\frac{1}{B}\le-\frac{5}{2}\)
GIÚP MÌNH NHA!!! 5 Tick 1 câu
Cho biểu thức : A= \(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\) (với \(x\ne0;x\ne1\)).
a) rút gọn A.
b) Tìm x để A=-1.
\(A=\left(\dfrac{\sqrt{x}+1+x+\sqrt{x}}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}-1-x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{-\left(x-2\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\left(\dfrac{-\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\right)\)
\(=-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)=1-x\)
\(A=-1\Leftrightarrow1-x=-1\Rightarrow x=2\)
a) Ta có: \(A=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)
=1-x
b) Để A=-1 thì 1-x=-1
hay x=2
Rút gọn
a) \(\frac{x}{y}\sqrt{\frac{y^2}{x^4}}\left(x\ne0;y>0\right)\) b) \(3x^2\sqrt{\frac{8}{x^2}}\left(x< 0\right)\) c) \(2x^3y^3\sqrt{\frac{4}{x^8y^6}}\left(x\ne0;y< 0\right)\)
d)\(\frac{\sqrt{4x^4y^6}}{\sqrt{196x^6y^6}}\left(x< 0;y\ne0\right)\)
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
rút gọn
B=\(\dfrac{x\sqrt{x}-8}{x-2\sqrt{x}}-\dfrac{x\sqrt{x}+8}{x+2\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)tìm đk để B rút gọn
C=\(\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)tìm x ∈Z để C ∈Z
b, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
Ta có : \(B=\dfrac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x+2}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}}-\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+4-x+2\sqrt{x}-4+x+2}{\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}+2}{\sqrt{x}}\)
b) Ta có: \(B=\dfrac{x\sqrt{x}-8}{x-2\sqrt{x}}-\dfrac{x\sqrt{x}+8}{x+2\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}}-\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+x+2}{\sqrt{x}}\)
c) Ta có: \(C=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3-5+\left(x-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)(x≥0,x≠4,x≠9)
1,Tìm x để A.\(\sqrt{x}\)=-1
2,Tìm x∈ Z để A∈Z
3, Tìm Min \(\dfrac{1}{A}\)
4,Tìm x∈N để A là số nguyên dương lớn nhất
5,Khi A+\(|A|\)=0, tìm GTLN của bth A.\(\sqrt{x}\)
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
P=\(\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
Rút gọn P
Tìm x để P=5
Tìm x để p>0
Tính P tại x=5-2\(\sqrt{6}\)
a) Ta có: \(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
\(=\left(\dfrac{x+1}{x+1}+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{x-2\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1}{1}\cdot\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b) Để \(P=5\) thì \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}=5\)
\(\Leftrightarrow x+\sqrt{x}+1=5\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow x+\sqrt{x}+1=5\sqrt{x}-5\)
\(\Leftrightarrow x+\sqrt{x}+1-5\sqrt{x}+5=0\)
\(\Leftrightarrow x-4\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\cdot\sqrt{x}\cdot2+4+2=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+2=0\)(Vô lý)
Vậy: Không có giá trị nào của x để P=5
\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
a, tìm gtri của x để bthuc M có nghĩa và rút gọn bthức M
b, tìm x thuộc Z để M=5
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
cho biểu thức:
\(A=\frac{\frac{x^2-x+2}{x^2}}{\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}}\)
với \(x\ne0\)
a) Rút gọn A
b) Tìm x để A có giá trị max