Những câu hỏi liên quan
VT
Xem chi tiết
LC
Xem chi tiết
XL
Xem chi tiết
TD
Xem chi tiết
VH
27 tháng 3 2015 lúc 22:28

2a^2 + 2b^2 -5ab=0 <=>(2a^2 - 4ab) - (ab - 2b^2) = 0 <=> 2a(a- 2b) - b(2a-b) =0

<=> (a-2b)(2a-b)=0 <=>hoặc a=2b hoăc b=2a

Sau đó thay vào tính được P={1/4 ; 1}

Bình luận (0)
TL
Xem chi tiết
LP
Xem chi tiết
HH
30 tháng 6 2017 lúc 9:26

ĐK \(9a^2-b^2\ne0\)

Ta có B =\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a+b\right)\left(3a-b\right)}\)

=\(\frac{6a^2+2ab-3ab-b^2+15ab-5b^2-3a^2+ab}{9a^2-b^2}\)

=\(\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3\left(a^2+5ab-2b^2\right)}{9a^2-b^2}\)

Từ \(10a^2-3b^2+5ab=0\Rightarrow5ab=3b^2-10a^2\)

\(\Rightarrow B=\frac{3\left(a^2+3b^2-10a^2-2b^2\right)}{9a^2-b^2}=\frac{3\left(-9a^2+b^2\right)}{9a^2-b^2}=-3\)

Vậy B =-3

Bình luận (0)
VV
14 tháng 8 2018 lúc 15:36

x2(y+z)+y2(z+y)+z2(x+y)

Bình luận (0)
NA
Xem chi tiết
PH
Xem chi tiết
SD
Xem chi tiết
TL
1 tháng 10 2020 lúc 19:06

\(B=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{9a^2-b^2}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)\(=\frac{3a^2+3\left(3b^2-10a^2\right)-6b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\)

Bình luận (0)
 Khách vãng lai đã xóa