Những câu hỏi liên quan
NN
Xem chi tiết
NH
6 tháng 3 2022 lúc 22:24

\(10A=10.\dfrac{10^{2004}+1}{10^{2005}+1}=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\\ 10B=10.\dfrac{10^{2005}+1}{10^{2006}+1}=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)

vì \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\Rightarrow10A>10B\Rightarrow A>B\)

Bình luận (0)
SL
Xem chi tiết
SL
Xem chi tiết

Giải:

A=102004+1/102005+1

10A=102005+10/102005+1

10A=102005+1+9/102005+1

10A=1+9/102005+1

Tương tự:

B=102005+1/102006+1

10B=1+9/102006+1

Vì 9/102005+1>9/102006+1 nên 10A>10B

⇒A>B

Chúc bạn học tốt!

Bình luận (1)
H24
Xem chi tiết
NX
22 tháng 3 2021 lúc 19:37

Đề bài đâu bn?

 

Bình luận (0)
NT
22 tháng 3 2021 lúc 20:14

Ta có: \(10\cdot A=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\)

\(10B=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)

mà \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\)

nên 10A>10B

hay A>B

Bình luận (0)
HQ
Xem chi tiết
LC
Xem chi tiết
AW
9 tháng 8 2017 lúc 20:42

vì x+y+z=m

=> x+y+z=m

vậy x+y+z=m

Bình luận (0)
EL
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
HB
7 tháng 11 2017 lúc 10:33

Dễ thấy m>n>0m>n>0. Ta có 2n(2m−n−1)=19842n(2m−n−1)=1984 . Nhận thấy 2m−n−12m−n−1 lẻ và 2n2n là lũy thừa bậc 2 của một số nguyên dương. Mà khi phân tích 1984=2⋅311984=2⋅31 nên 2n=26⟹n=62n=26⟹n=6 và 2m−n−1=31⟹2m−n=25⟹m−n=5⟹m=112m−n−1=31⟹2m−n=25⟹m−n=5⟹m=11. 

k mk nja

Bình luận (0)
NT
Xem chi tiết