Cho x/y tối giản. Chứng minh rằng: x/y+1 tối giản
a)chứng minh phân số n-1/n^2 là phân số tối giản
b)tìm các số nguyên x,y sao cho x/-9=15/y=1/3
Goị d=(n-1,n^2)
Ta có:
(n-1)^2 chia hết cho d
=> n^2-2n+1 chia hết cho d
=> 2n-1 chia hết cho d=>2n-1-2(n-1) chia hết cho d
=> 1 chia hết cho d=>d=1
Vậy: P/S: n-1/n^2 là P/S tối giản
b)x/-9=15/y=1/3=-3/-9=15/45
=> x=-3;y=45
\(\frac{x}{-9}=\frac{15}{y}=\frac{1}{3}\)
Ta có :
+) \(\frac{x}{-9}=\frac{1}{3}\)
\(\Rightarrow x=\frac{\left(-9\right).1}{3}\)
\(\Rightarrow x=-3\)
+) \(\frac{15}{y}=\frac{1}{3}\)
\(\Rightarrow y=15.3\)
\(\Rightarrow y=45\)
Vậy x=-3 và y=45
cho các số nguyên dương x,y thỏa mãn \(x^3-9y^2+9x-6y=1\) a) chứng minh \(\dfrac{x}{x^2+9}\) là phân số tối giản b) tìm tất cả các cặp số (x;y)
Lời giải:
$x^3-9y^2+9x-6y=1$
$\Leftrightarrow x^3+9x=9y^2+6y+1$
$\Leftrightarrow x(x^2+9)=(3y+1)^2$
Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$
$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$
Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau.
$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.
Chứng minh rằng phân số sau tối giản
\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
Lời giải:
Gọi $d$ là ƯCLN $(2^{2024}+3, 2^{2023}+1)$
Ta có:
$2^{2024}+3\vdots d$
$2^{2023}+1\vdots d$
$\Rightarrow 2^{2024}+3-2(2^{2023}+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{2^{2024+3}{2^{2023}+1}$ là ps tối giản.
Chứng minh rằng 3n-2 trên 4n-3 là phân số tối giản
Cho a trên b là một phân số chưa tối giản. Chứng minh rằng các phân sau chưa tối giản
a) a trên a-b
b) 2a trên a-2b
Cho phân số p/q tối giản,chứng minh rằng phân số p+q/q cũng tối giản
cho phân số p/q là phân số tối giản chứng minh (p+q)/q cũng là phân số tối giản
cho phân số a/b tối giản chứng minh rằng a/b+a là phân số tối giản
Cho phân số a/b tối giản. Chứng minh rằng phân số 2a+b/a(a+b) tối giản
Chứng minh rằng nếu cộng một phân số tối giản với 1 thì được một phân số tối giản
xét phân số tối giản đó là \(\frac{p}{q}\)
Do đó \(\left(p,q\right)=1\)
nên \(\left(p+q,q\right)=1\Rightarrow\frac{p+q}{q}=\frac{p}{q}+1\) là phân số tối giản
cho a/b chưa tối giản . chứng minh rằng phân số 3b/2a-3b chưa tối giản
Bài làm của bạn Hà Vũ Thị Thu cũng khá đúng nhưng mình sửa lại 1 vài chỗ cho chuẩn lun nhé :)
Giả sử \(ƯCLN\left(a,b\right)=d\) \(\left(d\inℤ;d\ne-1;0;1\right)\)
\(\Rightarrow\)\(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}\Rightarrow\hept{\begin{cases}2a⋮d\\3b⋮d\end{cases}\Rightarrow}2a-3b⋮d}\)
Vì cả tử và mẫu của phân số \(\frac{3b}{2a-3b}\) đều chia hết cho \(d\) mà \(d\ne-1;0;1\)
Nên phân số \(\frac{3b}{2a-3b}\) rút gọn được cho \(d\) hay phân số đó chưa tối giản
Vậy phân số \(\frac{3b}{2a-3b}\) chưa tối giản nếu \(\frac{a}{b}\) chưa tối giản
Chúc bạn học tốt ~
Giả sử \(ƯC\left(a,b\right)=d\left(d\in N;d>1\right)\)
\(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}\Rightarrow\left(a-b\right)⋮d\Rightarrow\hept{\begin{cases}3b⋮d\\2a-3b⋮d\end{cases}}}\)
\(\Rightarrow UC\left(3b;2a-3b\right)⋮d\).Hay phân số \(\frac{3b}{2a-3b}\)chưa tối giản