Lời giải:
Gọi $d$ là ƯCLN $(2^{2024}+3, 2^{2023}+1)$
Ta có:
$2^{2024}+3\vdots d$
$2^{2023}+1\vdots d$
$\Rightarrow 2^{2024}+3-2(2^{2023}+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{2^{2024+3}{2^{2023}+1}$ là ps tối giản.
Lời giải:
Gọi $d$ là ƯCLN $(2^{2024}+3, 2^{2023}+1)$
Ta có:
$2^{2024}+3\vdots d$
$2^{2023}+1\vdots d$
$\Rightarrow 2^{2024}+3-2(2^{2023}+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{2^{2024+3}{2^{2023}+1}$ là ps tối giản.
Chứng minh rằng các phân số sau tối giản
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
Chứng minh rằng các phân số sau tối giản
a) \(\dfrac{2n+7}{2n+3}\) (n ∈ N)
b)\(\dfrac{6n+5}{8n+7}\)(n ∈ N)
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
\(\dfrac{2^{2023}+3^{2023}}{2^{2024}+3^{2024}}\) chứng minh phấn số đó tối giản
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a)\(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a) \(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
chứng minh rằng phân số sau tối giản với mọi số tự nhiên n
\(\dfrac{3n+2}{5n+3}\)
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
Chứng minh rằng 3n-2 trên 4n-3 là phân số tối giản
Cho a trên b là một phân số chưa tối giản. Chứng minh rằng các phân sau chưa tối giản
a) a trên a-b
b) 2a trên a-2b
chứng minh phân số sau là phân số tối giản: \(\dfrac{2.n^2+n+1}{n}\)