Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
B9
Xem chi tiết
H24
25 tháng 10 2020 lúc 12:24

       Bài làm :

Xét 3 trường hợp :

Trường hợp 1: p= 3

⇒2.p+ 1= 7

2.p+ 5= 11 ( thỏa mãn)

Trường hợp 2 : p= 3.k+ 1

⇒ 2.p+ 1= 2. ( 3.k+ 1) + 1= 6.k+ 2+ 1= 6.k+ 3= 3. (2.k+ 1) chia hết cho 3 và lớn hơn 3 nên là hợp số

⇒ Loại

Trường hợp 3 : p= 3.k+ 2

⇒ 2.p+ 5= 6.k+ 4+ 5= 6.k+ 9= 3. (2.k+ 3) chia hết cho 3 và lớn hơn 3 nên là hợp số

⇒ Loại

Vậy p= 3

Bình luận (0)
 Khách vãng lai đã xóa
VK
Xem chi tiết
TT
26 tháng 3 2016 lúc 17:32

vs p=2 bn tu xet nha. vs p=3k+1 thi bn cx tu xet .vs p=3k+2 thi bn cx tu xet vs p=3k ma p la snt nen p=3 khi do bn tu thay vao

Bình luận (0)
LT
26 tháng 3 2016 lúc 16:28

bẠN tự xét p  có dạng 3k,3k+1,3k+2 nha

thì sẽ được p có dạng 3k thì 2p-1 và 2p+1 là snt

mà p là snt =>p=3

Bình luận (0)
TA
Xem chi tiết
NG
4 tháng 12 2021 lúc 9:43

2p + 1, 5p + 2 cùng là các số nguyên tố
Chỉ có một số đáp ứng là số 3 vì:
2x3+1=7
5x3+2=17
Mà 7 và 17 là số nguyên tố nên p=3

Bình luận (0)
TH
13 tháng 1 2024 lúc 20:30

p=4

Bình luận (0)
HP
Xem chi tiết
H24
18 tháng 7 2015 lúc 19:20

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

Bình luận (0)
TL
18 tháng 7 2015 lúc 19:30

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

Bình luận (0)
My
14 tháng 8 2016 lúc 15:35

 câu a là p ko có giá trị chớ

Bình luận (0)
NT
Xem chi tiết

Tham  khảo:Cho số nguyên tố P. Biết 2P+1 và 4P+1 cũng là số nguyên tố. Tìm P

 Xét các trường hợp : 
+ P = 2 ---> 2P + 1 = 5 (là số n/tố) ; 4P + 1 = 9 (là hợp số nên P = 2 loại) 
+ P = 3 ---> 2P + 1 = 7; 4P + 1 = 13 (đều là số n/tố ---> P = 3 thỏa mãn) 
+ P > 3 
..Vì P là số n/tố và P > 3 ---> P ko chia hết cho 3 ---> P = 3k+1 hoặc P = 3k+2 
a) Nếu P = 3k+1 ---> 2P + 1 = 6k + 3 chia hết cho 3 (là hợp số nên t/h này bị loại) 
b) Nếu P = 3k+2 ---> 4P + 1 = 12k + 9 chia hết cho 3 (là hợp số nên t/h này cũng bị loại) 
Vậy chỉ có 1 đáp án là P = 3

Bình luận (0)
NA
Xem chi tiết
DH
6 tháng 11 2021 lúc 20:46

Với \(p=2\)\(p^3+2=10\)là hợp số (loại). 

Với \(p=3\)\(2p-1=5,p^3+2=29\)đều là số nguyên tố (thỏa mãn) 

Với \(p>3\): khi đó \(p\)có dạng \(3k+1\)hoặc \(3k+2\).

Với \(p=3k+1\)\(p^3+2=\left(3k+1\right)^3+2\equiv1+2\left(mod3\right)\equiv0\left(mod3\right)\)

do đó \(p^3+2\)chia hết cho \(3\)mà \(p^3+2>3\)nên không là số nguyên tố. 

Với \(p=3k+2\)\(2p-1=2\left(3k+2\right)-1=6k+3⋮3\)

mà \(2p-1>3\)nên không là số nguyên tố. 

Vậy \(p=3\).

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết

Trả lời :.....................

p = 3.....................

Hk tốt......................

Bình luận (0)
AN
Xem chi tiết
NT
6 tháng 7 2016 lúc 14:53

xét p=2=>2p+1=5;8p2+1=33         loại

xét p=3:

=>2p+1=7;8p2+1=73         t/mãn

xét p>3:

=>p2 chia 3 dư 1

=>8p2 chia 3 dư 2

=>8p2+1 chia hết cho 3           loại

vậy p=3

Bình luận (0)
Xem chi tiết
H24
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Bình luận (0)
HM
Xem chi tiết
KL
12 tháng 9 2023 lúc 7:35

Do 2p - 1 lẻ và 4p - 1 lẻ nên p chẵn

Vậy p = 2

Bình luận (0)
NH
12 tháng 9 2023 lúc 8:30

Dùng phương pháp đánh giá em nhá.

Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)

        p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)

Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)

       p  = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)

Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)

       p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)

Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)

Từ những phân tích trên ta có p = 2; 3

Kết luận: p \(\in\) {2; 3}

    

        

  

Bình luận (0)