Tính giá trị của biểu thức sau
(5x2+3y2)/(10x2-3y2)
Với x / 3 = y / 5
Tìm giá trị của biểu thức
A= ( 5x2+3y2) phần( 10x2- 3y2 ) tại x phần 3 = y phần 5
\(A=\dfrac{5x^2+3y^2}{10x^2-3y^2}\)Thay \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)vào ta đc
\(A=\dfrac{5.9k^2+3.25k^2}{10.9k^2-3.25k^2}=\dfrac{120k^2}{15k^2}=8\)
Tìm giá trị lớn nhất của biểu thức:
B = xy.(xy - 8) + 5x2 + 3y2 - 2x - 8y + 2036
Với x = -3, y = -2, z = 3 thì giá trị biểu thức D = 2 x 3 - 3 y 2 + 8 z + 5 là
A. D = -36
B. D = 37
C. D = -37
D. D = -73
Thay x = -3, y = -2, z = 3 vào biểu thức D ta có:
2 . ( - 3 ) 3 - 3 . ( - 2 ) 2 + 8 . 3 + 5 = 2 . ( - 27 ) - 3 . 4 + 24 + 5
= -54 - 12 + 24 + 5 = -66 + 24 + 5 = -42 + 5 = -37
Vậy D = -37 tại x = -3; y = -2; z = 3
Chọn đáp án C
Cho các số x,y thỏa mãn đẳng thức
tính giá trị biểu thức M=(x+y)2017+(x-2)2018+(y+ 1)2015
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Giá trị của biểu thức E = 2 x 3 – 2 y 3 – 3 x 2 – 3 y 2 khi x – y = 1 là
A. -1
B. 2
C. 1
D. 0
E = 2 x 3 – 2 y 3 – 3 x 2 – 3 y 2 = 2 ( x 3 – y 3 ) – 3 ( x 2 + y 2 ) = 2 ( x – y ) ( x 2 + x y + y 2 ) – 3 ( x 2 + y 2 )
Vì x – y = 1 nên
E = 2 ( x 2 + y 2 + x y ) – 3 x 2 – 3 y 2 = - ( x 2 – 2 x y + y 2 ) = - ( x – y ) 2 = - 1
Đáp án cần chọn là: A
Cho x, y là các số thực thỏa mãn ( x − 3 ) 2 + ( y − 1 ) 2 = 5 . Giá trị nhỏ nhất của biểu thức P = 3 y 2 + 4 x y + 7 x + 4 y − 1 x + 2 y + 1 là
A. 2 3 .
B. 3 .
C. 114 11 .
D. 3
Toán lớp 0 ????? \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)
tìm giá trị của biểu thức Q= 2x2-3xy/x2+3y2 với 2x+y=11z và 3x-y=4z
Ta có:
\(2x+y=11z\) và \(3x-y=4z\)
Chia theo vế ta có:
\(\dfrac{2x+y}{3x-y}=\dfrac{11z}{4z}=\dfrac{11}{4}\)
\(\Leftrightarrow4\left(2x+y\right)=11\left(3x-y\right)\)
\(\Leftrightarrow8x+4y=33x-11y\)
\(\Leftrightarrow15y=25x\)
\(\Leftrightarrow3y=5x\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}=k\)
\(\Rightarrow x=3k,y=5k\)
Thay vào Q ta có:
\(Q=\dfrac{2\cdot\left(3k\right)^2-3\cdot3k\cdot5k}{\left(3k\right)^2+3\cdot\left(5y\right)^2}\)
\(Q=\dfrac{18k^2-45k^2}{9k^2+75k^2}\)
\(Q=\dfrac{k^2\left(18-45\right)}{k^2\left(9+75\right)}\)
\(Q=\dfrac{-27}{84}=-\dfrac{9}{28}\)
\(\dfrac{2x+y}{3x-y}=\dfrac{11}{4}\)
=>33x-11y=8x+4y
=>25x=15y
=>5x=3y
=>x/3=y/5=k
=>x=3k; y=5k
\(Q=\dfrac{2\cdot9k^2-3\cdot3k\cdot5k}{9k^2+3\cdot25k^2}=\dfrac{18-9\cdot5}{9+3\cdot25}=\dfrac{-9}{28}\)
Tìm điều kiện của y để giá trị của biểu thức được xác định:
a) y − 3 2 y − 1 y + 5 ; b) 3 y 2 + 1 4 y y − 5 .
Cho x, y là các số thực thỏa mãn x − 3 2 + y − 1 2 = 5 . Tìm giá trị nhỏ nhất của biểu thức P = 3 y 2 + 4 x y + 7 x + 4 y − 1 x + 2 y + 1
A. 3
B. 3
C. 114 11
D. 2 3
Biết x 2 + y 2 = 1 . Tính giá trị của biểu thức M = 3 x 2 ( x 2 + y 2 ) + 3 y 2 ( x 2 + y 2 ) – 5 ( y 2 + x 2 )
A. -8
B. 2
C. 8
D. -2
Ta có
M = 3 x 2 ( x 2 + y 2 ) + 3 y 2 ( x 2 + y 2 ) – 5 ( y 2 + x 2 ) = ( x 2 + y 2 ) ( 3 x 2 + 3 y 2 – 5 ) = ( x 2 + y 2 ) [ 3 ( x 2 + y 2 ) – 5 ]
Mà x 2 + y 2 = 1 nên M = 1.(3.1 – 5) = -2. Vậy M = -2
Đáp án cần chọn là: D