Cho , E là trung điểm của BC. Lấy D thuộc tia đối của tia EA
sao cho ED = EA.
Chứng minh: AC // BD
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
ghi gt kl
Cho AABC, E là trung điểm của BC. Trên tia đối của tia EA lấy điểm D sao cho ED = EA.
a) Chứng minh AAEC=ADEB
b) Chứng minh AC=BD và AC//BD
c) Kẻ EH 1 AC(H e AC), EK 1 BD(K = BD). Chứng minh AAHE=ADKE
d) Gọi I là trung điểm của AB, vẽ điểm M sao cho I là trung diểm của CM.
Chứng minh B là trung điểm của MD
a: Xét ΔAEC và ΔDEB có
EA=ED
\(\widehat{AEC}=\widehat{DEB}\)
EC=EB
Do đó: ΔAEC=ΔDEB
b: Xét tứ giác ABDC có
E là trung điểm của AD
E là trung điểm của CB
DO đó; ABDC là hình bình hành
Suy ra: CA//BD và AC=BD
c: Xét ΔAHE vuông tại H và ΔDKE vuông tại K có
EA=ED
\(\widehat{EAH}=\widehat{EDK}\)
Do đó: ΔAHE=ΔDKE
Cho tam giác ABC, E là trung điểm BC. Lấy D thuộc tia đối của tia EA sao cho EA = ED
a, Chứng minh rằng : tam giác AEB = tam giác DEC
b, Chứng minh rằng : AC // BD
c, Kẻ EI vuông góc với AC ( I thuộc Ac ) ; EK vuông góc với BD ( K thuộc BD ). Chứng minh tam giác AIE = tam giác DKE
d, Chứng minh 3 điểm I,E,K thẳng hàng
HELP MEEEEEE !?
.Vì E là trung điểm BC, E là trung điểm AD
→ΔAEB=ΔDEC(c.g.c)→ΔAEB=ΔDEC(c.g.c)
b.Tương tự ta có thể chứng minh ΔAEC=ΔDEB(c.g.c)ΔAEC=ΔDEB(c.g.c)
→ˆEAC=ˆEDB→AC//BD→EAC^=EDB^→AC//BD
c.Vì
⎧⎪⎨⎪⎩ˆEAC=ˆEDB(câub)AE=DEˆAIE=ˆEKD=90o{EAC^=EDB^(câub)AE=DEAIE^=EKD^=90o
→ΔAIE=ΔDKE(g.c.g)→ΔAIE=ΔDKE(g.c.g)
d.Từ câu c
→ˆAEI=ˆKED→AEI^=KED^
→ˆKEI=ˆKED+ˆDEI=ˆAEI+ˆDEI=ˆAED=180o→KEI^=KED^+DEI^=AEI^+DEI^=AED^=180o
→K,E,I→K,E,I thẳng hàng
a) Xét \(\Delta\)AEB và \(\Delta\)DEC có:
EB=EC(E: trđ BC)
AEB=DEC(đối đỉnh)
EA=ED(gt)
\(\Rightarrow\Delta\)AEB=\(\Delta\)DEC(c.g.c)
b) Xét \(\Delta\)AEC và \(\Delta\)DEB có:
EA=ED(gt)
AEC=DEB(đối đỉnh)
EB=EC(E: trđ BC)
\(\Rightarrow\Delta\)AEC=\(\Delta\)DEB(c.g.c)
\(\Rightarrow\)CAE=EDB(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong
\(\Rightarrow\)AC//BD
c) Xét \(\Delta\)AIE và \(\Delta\)DKE có:
AEI=DEK(đối đỉnh)
EA=ED(gt)
AIE=DKE(=90o)
\(\Rightarrow\Delta\)AIE=\(\Delta\)DKE(ch-gn)
d) Vì \(\Delta\)AIE=\(\Delta\)DKE
\(\Rightarrow\)IEA=KED(2 góc tương ứng)
Ta có:
IEA+IED=180o(kề bù)
\(\Rightarrow\)KED+IED=180o
\(\Rightarrow\)IEK=180o
\(\Rightarrow\)I, E, K thẳng hàng
CHO TAM GIÁC A,B,C,CÓ AB=AC. E LÀ TRUNG ĐIỂM CỦA BC , TRÊN TIA ĐỐI CỦA TIA EA LẤY ĐIỂM D SAO CHO AE = ED a.CHỨNG MINH : AB//DC b.CHỨNG MINH :AE VUÔNG BC c.TÌM ĐIỀU KIỆN CỦA TAM GIÁC A,B,C ĐỂ GÓC ABC BẰNG 45ĐỘ
a) Xét ΔAEB và ΔDEC có
AE=DE(gt)
\(\widehat{AEB}=\widehat{DEC}\)(hai góc đối đỉnh)
EB=EC(E là trung điểm của BC)
Do đó: ΔAEB=ΔDEC(c-g-c)
⇒\(\widehat{ABE}=\widehat{DCE}\)(hai góc tương ứng)
mà \(\widehat{ABE}\) và \(\widehat{DCE}\) là hai góc ở vị trí so le trong
nên AB//DC(Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EB=EC(E là trung điểm của BC)
nên E nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE là đường trung trực của BC
hay AE⊥BC(đpcm)
c) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}\)(Số đo của góc ở đỉnh trong ΔABC cân tại A)
hay \(\widehat{BAC}=180^0-2\cdot45^0=90^0\)
Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì \(\widehat{ABC}=45^0\)
cho tam giác ABC có 3 góc nhọ. Trên tia đối của tia AB và AC lấy điểm D và E sao cho: A là trung điểm của BD, A là trung điểm của AC
a) Chứng minh ED=BC
b) Chứng minh EB//DC
c) vẽ AM vuông góc ED (M thuộc ED), vẽ AN vuông góc BC (N thuộc BC). Chứng minh A là trung diểm của MN
( k có hình cũng đc nếu có thì càng tốt, thanks rất nhiều!!)
Cho tam giác ABC cân tại A.Trên cạnh BC lấy điểm D và E ( D nằm giữa B và E) sao cho BD=DE=EC
a) Chứng minh góc BAD bằng góc CAE
b) Chứng minh AD < AC
c) Trên tia đối của tia EA lấy điểm K sao cho EK = EA.Chứng minh góc BAD = CAE và nhỏ hơn góc DAE
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
a) Ta có: tam giác ABC cân tại A (gt)
=> Góc B = góc C1, AB = AC (định lí)
Xét tam giác ABD và tam giác ACE có:
AB = AC (chứng minh trên)
BD = CE (gt)
Góc B = góc C1 (chứng minh trên)
=> Tam giác ABD = tam giác ACE (c.g.c)
=> Góc BAD = góc CAE (2 góc tương ứng) (đpcm)
b) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)
=> AB = AC (2 cạnh tương ứng)
Xét tam giác ADE và tam giác CEK có:
DE = CE (gt)
Góc AED = góc CEK (2 góc đối đỉnh)
AE = EK (gt)
=> Tam giác ADE = tam giác CKE (c.g.c)
=> AD = CK (2 cạnh tương ứng)
Kẻ đường cao AH
Ta có: DH < AH
=> AD < AB mà AB = AC (chứng minh trên)
=> AC > AD (đpcm)
c) Ta có: AD < AC
Mà AD = CK (2 cạnh tương ứng)
=> CK < AC
Xét tam giác ACK có AC > CK
=> Góc CAK < góc K (định lí)
Lại có: góc BAD = góc CAE (chứng minh trên)
=> Góc BAD < góc K
Mà góc K = DAE (vì tam giác ADE = tam giác KCE)
=> Góc BAD < góc DAE
hay góc BAD = góc CAE < góc DAE (đpcm)
cho tam giác ABC có 3 góc nhọn. Trên tia đối của tia AB và AC lấy điểm D và E sao cho: A là trung điểm của BD, A là trung điểm của AC
a) Chứng minh ED=BC
b) Chứng minh EB//DC
c) vẽ AM vuông góc ED (M thuộc ED), vẽ AN vuông góc BC (N thuộc BC). Chứng minh A là trung diểm của MN
Cho tam giác ABC,D là trung điểm của AB, E là trung điểm của AC. Trên tia đối của tia ED lấy điểm F sao cho EF=ED . Chứng minh rằng a)BD=CF b)DE//BC và DE=1/2 BC
a: Xét tứ giác ADCF có
E là trung điểm chung của AC và DF
=>ADCF là hình bình hành
=>AD=CF=BD
b: Xét ΔABC có AD/AB=AE/AC=1/2
nên DE//BC và DE/BC=AD/AB=1/2
cho tam giác A,B,C điểm E là trung điểm của BC lấy điểm D thuộc tia đối của EA sao cho ED bằng EA
Cho tam giác ABC có AB=AC. Lấy E là trung điểm của BC
a) Chứng minh tam giác ABE=tam giác ACE
b) Lấy D thuộc tia đối của tia EA sao cho ED=EA. Chứng Minh AC//BD
c) Kẻ EM vuông góc với AB; EN vuông góc với DC (M thuộc AB, N thuộc CD)
Chứng minh EM=EN
a: Xét ΔABE và ΔACE có
AB=AC
AE chung
BE=CE
Do đó: ΔABE=ΔACE