Những câu hỏi liên quan
H24
Xem chi tiết
NT
30 tháng 7 2023 lúc 21:27

1: Để phương trình có nghiệm duy nhất thì a<>0

2: Để phương trình có nghiệm duy nhất thì a/2<>0

=>a<>0

Bình luận (0)
DA
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
AN
2 tháng 7 2017 lúc 10:25

Gọi m là nghiệm chung của 2 phương trình thì ta có:

\(\hept{\begin{cases}m^2+am+6=0\\m^2+bm+12=0\end{cases}}\)

\(\Rightarrow2m^2+\left(a+b\right)m+18=0\)

Để phương trình có nghiệm thì

\(\Delta=\left(a+b\right)^2-144\ge0\)

\(\Leftrightarrow\left|a+b\right|\ge12\)

Ta lại có:

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)

Tới đây thì đơn giản rồi nên b tự làm nhé.

Bình luận (0)
AN
1 tháng 7 2017 lúc 22:51

m ở đâu ra.

Bình luận (0)
NN
Xem chi tiết
TH
30 tháng 4 2023 lúc 22:15

\(x^2-2mx-4m+1=0\left(1\right)\)

\(x^2+\left(3m+1\right)x+2m+1=0\left(2\right)\)

Gọi x0 là nghiệm chung của hai phương trình trên. Do đó ta có:

\(\left\{{}\begin{matrix}x_0^2-2mx_0-4m+1=0\left(3\right)\\x_0^2+\left(3m+1\right)x_0+2m+1=0\end{matrix}\right.\)

\(\Rightarrow\left(3m+1\right)x_0+2m+1-\left(-2mx_0-4m+1\right)=0\)

\(\Rightarrow\left(5m+1\right)x_0+6m=0\)

\(\Rightarrow m\left(5x_0+6\right)+x_0=0\)

\(\Rightarrow m=\dfrac{-x_0}{5x_0+6}\) \(\left(x_0\ne\dfrac{-6}{5}\right)\)

Thay vào (3) ta được:

\(x_0^2-2.\dfrac{-x_0}{5x_0+6}.x_0-4.\dfrac{-x_0}{5x_0+6}+1=0\)

\(\Rightarrow x_0^2+\dfrac{2x_0^2}{5x_0+6}+\dfrac{4x_0}{5x_0+6}+1=0\)

\(\Leftrightarrow x_0^2\left(5x_0+6\right)+2x_0^2+4x_0+5x_0+6=0\)

\(\Leftrightarrow5x_0^3+8x_0^2+9x_0+6=0\)

\(\Leftrightarrow5x_0^3+5x_0^2+3x_0^2+3x_0+6x_0+6=0\)

\(\Leftrightarrow5x_0^2\left(x_0+1\right)+3x_0\left(x_0+1\right)+6\left(x_0+1\right)=0\)

\(\Leftrightarrow\left(x_0+1\right)\left(5x_0^2+3x_0+6\right)=0\)

\(\Leftrightarrow x_0=-1\)

\(\Rightarrow m=\dfrac{-x_0}{5x_0+6}=\dfrac{-\left(-1\right)}{5.\left(-1\right)+6}=\dfrac{1}{6}\)

Bình luận (0)
NT
30 tháng 4 2023 lúc 21:42

Xét (1) : Để pt có nghiệm khi 

\(\Delta'=m^2-\left(-4m+1\right)=m^2+4m-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le-2-\sqrt{5}\\x\ge-2+\sqrt{5}\end{matrix}\right.\)

(2) : Để pt có nghiệm khi \(\Delta=\left(3m+1\right)^2-4\left(2m+1\right)=9m^2+6m+1-8m-4=9m^2-2m-3\ge0\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{1-2\sqrt{7}}{9}\\x\ge\dfrac{1+2\sqrt{7}}{9}\end{matrix}\right.\)

Để 2 pt có nghiệm chung khi \(\left[{}\begin{matrix}x\le-2-\sqrt{5}\\x\ge\dfrac{1+2\sqrt{7}}{9}\end{matrix}\right.\)

Bình luận (0)
HK
Xem chi tiết
NT
Xem chi tiết
H24
24 tháng 1 2019 lúc 23:29

Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm

Làm câu 2 trước vậy , câu 1 để sau

a, pt có nghiệm \(x=2-\sqrt{3}\)

\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)

\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)

Vì VP là số hữu tỉ

=> VT là số hữu tỉ

Mà \(\sqrt{3}\)là số vô tỉ

=> 4a + b + 15 = 0

=> 7a + 2b + 25 = 0

Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)

Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)

b, Với a = -5 ; b = 5 ta có pt:

\(x^3-5x^2+5x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)

Giả sử x1 = 1 là 1 nghiệm của pt ban đầu

          x2 ; x3 là 2 nghiệm của pt (1)

Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)

Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)

     \(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)

\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)

\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)

\(\Leftrightarrow x^5_2+x_3^5+4=728\)

\(\Leftrightarrow x_2^5+x_3^5=724\)

  Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)

            \(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)

            \(=1+724\)

             \(=725\)

Vậy .........

Bình luận (0)
H24
25 tháng 1 2019 lúc 23:28

Câu 1 đây , lừa người quá

Giả sử pt có 2 nghiệm x1 ; x2

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)

\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)       

Lại có \(x_1+x_2=m^2\inℕ^∗\)

Mà x1 hoặc x2 nguyên

Nên suy ra \(x_1;x_2\inℕ^∗\)

Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)

\(\Leftrightarrow2m+2-m^2+1\ge0\)

\(\Leftrightarrow-1\le m\le3\)

Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)

Thử lại thấy m = 3 thỏa mãn

Vậy m = 3

Bình luận (0)
HL
Xem chi tiết
DB
Xem chi tiết
NL
15 tháng 2 2022 lúc 12:15

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

Bình luận (0)
NL
15 tháng 2 2022 lúc 12:06

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

Bình luận (1)
NL
15 tháng 2 2022 lúc 12:09

2.

a. Pt có 2 nghiệm cùng dấu khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)

Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương

b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)

Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm

Bình luận (0)