ND

Những câu hỏi liên quan
PL
Xem chi tiết
LM
7 tháng 1 2022 lúc 22:45

21, phones

22, invent

Bình luận (0)
TA
7 tháng 1 2022 lúc 22:48

Câu 22:  invent

Bình luận (0)
MN
7 tháng 1 2022 lúc 22:50

22. are invented

Bình luận (2)
PP
Xem chi tiết
H24
30 tháng 5 2021 lúc 15:14

20A 21C 22B

Bạn chụp mặt trước nữa thì mình mới giúp được hết nha

Bình luận (1)
NB
Xem chi tiết
NL
14 tháng 3 2022 lúc 21:46

\(\overrightarrow{AB}=\left(2;0;2\right)=2\left(1;0;1\right)\Rightarrow\) mp trung trực AB nhận (1;0;1) là 1 vpt

Gọi M là trung điểm AB \(\Rightarrow M\left(2;0;0\right)\)

Pt mp trung trực AB:

\(1\left(x-2\right)+0\left(y-0\right)+1\left(z-0\right)=0\Rightarrow x+z-2=0\)

Bình luận (0)
H24
Xem chi tiết
NL
8 tháng 3 2021 lúc 23:38

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{x+2017-\left(2015-x\right)}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}}{\dfrac{2000+x-\left(1998-x\right)}{\sqrt{2000+x}+\sqrt{1998-x}}}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{2000+x}+\sqrt{1998-x}}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}\)

\(=\dfrac{\sqrt{1999}+\sqrt{1999}}{\sqrt[3]{2016^2}+\sqrt[3]{2016^2}+\sqrt[3]{2016^2}}=\dfrac{2\sqrt{1999}}{3.24\sqrt[3]{294}}=\dfrac{\sqrt{1999}}{36\sqrt[3]{294}}\)

\(\Rightarrow a+b=1999+294\)

Bình luận (0)
H24
8 tháng 3 2021 lúc 19:18

undefined

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
NT
12 tháng 11 2021 lúc 16:52

Gấp ạ:((

Bình luận (0)
MN
12 tháng 11 2021 lúc 17:06

M = 2R + 32 + 16 x 4 = 142 (đvc)

=> R = 23 

 

Bình luận (0)
HP
Xem chi tiết
NC
17 tháng 8 2021 lúc 13:01

sinx - sin3x - \(\sqrt{3}\left(cosx+sin3x\right)=0\)

⇔ sinx - \(\sqrt{3}cosx-\left(1+\sqrt{3}\right)sin3x\) = 0

⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)-\left(1-\sqrt{3}\right)sin\left(\pi-3x\right)\) = 0

⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)+\left(1-\sqrt{3}\right)sin\left(3x-\pi\right)=0\)

⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)+\left(1-\sqrt{3}\right)sin3\left(x-\dfrac{\pi}{3}\right)=0\)

Đặt a = x - \(\dfrac{\pi}{3}\) ta có phương trình mới

2sina + (1 - \(\sqrt{3}\))sin3a = 0 (1)

Sử dụng công thức sin3a = 3sina - 4sin3a đưa (1) về phương trình bậc 3 ẩn là a. Từ a suy ra x

Bình luận (0)