kẻ phân giác AD của tam giác ABC giả sử AB =8cm AC = 12cm và CD-BD=5cm tính BD và CD
AB=9cm AC=12cm
tia phân giác góc A cắt cắt BC tại D từ D kẻ DE vuông góc với AC ( E thuộc AC )
a. tính tỉ số BD trên DC độ dài của BD và CD
b. chứng minh tam giác ABC đồng dạng với tam giác EDC
c. tính DE
d. tính tỉ số diện tích tam giác ABD trên diện tích tam giác ADC
bài này ra là
a 91cm
B ko bt
C 54
50%
100% S
Cho tam giác ABC vuông tại A và AB =12cm, AC =16cm .Đường phân giác góc A cắt BC tại D
a) Tính BC ,BD vad CD ĐS: BC =20cm , BD≈8,6cm ,DC≈11,4 cm
b) Vẽ đường cao AH .Tính AH ,HD và AD ĐS: AH ≈9.6 cm , HD ≈1,4cm , AD ≈9,7 cm
Lời giải:
a. Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm)
Áp dụng tính chất đường phân giác:
$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$
Mà: $BD+DC=BC=20$ nên:
$BD=20:(3+4).3=\frac{60}{7}$ (cm)
$CD= 20:(3+4).4=\frac{80}{7}$ (cm)
b.
$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm)
$HD = BD-BH = \frac{60}{7}-7,2=\frac{48}{35}$ (cm)
$AD = \sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=12^2+16^2=20^2\)
=>\(BC=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{12}=\dfrac{CD}{16}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>\(AH=\dfrac{192}{20}=9,6\left(cm\right)\)
Ta có: ΔAHB vuông tại H
=>\(HB^2+AH^2=AB^2\)
=>\(HB^2=12^2-9,6^2=51,84\)
=>\(HB=\sqrt{51,84}=7,2\left(cm\right)\)
=>HC=BC-HB=12,8(cm)
Vì CD<CH
nên D nằm giữa C và H
=>CD+DH=CH
=>\(DH=12.8-\dfrac{80}{7}=\dfrac{48}{35}\left(cm\right)\)
ΔAHD vuông tại H
=>\(AH^2+HD^2=AD^2\)
=>\(AD^2=\left(\dfrac{48}{35}\right)^2+9,6^2=\dfrac{4608}{49}\)
=>\(AD=\sqrt{\dfrac{4608}{49}}=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A có góc C = 60° và AC = 1 (đơn vị độ dài). Tính độ dài BC và AB
Bài 2 : Cho tam giác ABC nhọn, các đường trung tuyến BD, CE vuông góc vs nhau. Giả sử AB = 6cm, AC = 8cm. Tính độ dài BC?
Cho hình thang abcd(ab//cd, ab<cd) Từ phân giác của góc a, góc d cắt nhau tại e, phân giác của b, góc c cắt nhau tại f. Tính góc aed và góc bhc.
Giả sử ae và bd cắt nhau tại p trên cạnh nằm ngang dc.Chứng minh ad+ bc=dc.
a: góc EAD+góc EDA
=1/2góc BAD+1/2góc ADC
=1/2x180=90 độ
=>góc AED=90 độ
góc FBC+góc FCB=1/2góc ABC+1/2góc BCD=1/2x180=90 độ
=>góc BFC=90 độ
b: Xét ΔDAP có góc DAP=góc DPA(=góc BAP)
nên ΔDAP cân tại D
=>DA=DP
Xét ΔCBP có góc CPB=góc CBP
nênΔCBP cân tại C
=>CB=CP
=>AD+BC=CD
cho tam giác ABC vuông tại A , biết góc ACB=30độ
a,TÍnh góc ABC,so sánh AB và AC
b,kẻ phân Giác BD của góc ABC từ D kẻ DK vuông BC tại K.CM tam giác ABK đều
c, gọi M giao điểm DK và AB.CM: D là trọng tâm của tam giác BMC
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)
hay \(\widehat{ABC}=60^0\)
Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}\left(30^0< 60^0\right)\)
nên AB<AC
b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)
Suy ra: BA=BK(Hai cạnh tương ứng)
Xét ΔBAK có BA=BK(cmt)
nên ΔBAK cân tại B(ĐỊnh nghĩa tam giác cân)
mà \(\widehat{ABK}=60^0\)
nên ΔABK đều(Dấu hiệu nhận biết tam giác đều)
Cho tam giác ABC vuông tại A, kẻ đường phân giác BD của góc B. Đường thẳng đi qua A và vuông góc với BD cắt BC tại E.
a) Chứng minh: BA=BE
b) Chứng minh: tam giác BED là tam giác vuông
c) Giả sử góc C = 30 độ. Tam giác ABE là tam giác gì? Vì sao?
Cho tam giác ABC; góc A= 60 độ. Tia phân giác góc B cắt Ac tại D. Tia phân giác góc C cắt AB tại E. Gọi O là giao điểm của BD và CE.
a) Tính góc BOE và góc COD
b) Kẻ tia phân giác OG của góc BOC. Chứng minh OD=OG
Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau ở I. Gọi D và E là chân các đường vuông góc kẻ từ I đến AB và AC.
a/. Chứng minh rằng AD = AE.
b/. Tính độ dài AD, AE biết rằng AB = 6cm; AC = 8cm.