Những câu hỏi liên quan
LT
Xem chi tiết
DH
27 tháng 2 2021 lúc 14:18

a) Đặt \(d=\left(n+1,2n+3\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)

Suy ra \(d=1\)

Do đó ta có đpcm. 

b) Bạn làm tương tự ý a). 

c) Đặt \(d=\left(3n+2,5n+3\right)\).

Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).

Suy ra \(d=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
27 tháng 2 2021 lúc 14:12
N=2 2n=2.10
Bình luận (0)
 Khách vãng lai đã xóa
BH
Xem chi tiết
NH
9 tháng 5 2017 lúc 20:53

Gọi p là ƯC(2n+3,4n+8)

Ta có

2n+3 chia hết cho p <=> 1(2n+3) chia hết cho p

4n+8 chia hết cho p <=> (4n+8):2 chia hết cho p

=> (4n+8):2 - 1(2n+3) chia hết cho p

=> 2n+4 - 2n+3 chia hết cho p

=> 1 chia hết cho p

=> p thuộc Ư(1)

=> 2n+3 / 4n+8 là phân số tối giản

Bình luận (0)
HA
Xem chi tiết
NM
Xem chi tiết
AH
10 tháng 8 2023 lúc 23:36

Lời giải:

a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$

$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$

$\Rightarrow 2n+7-2(n+3)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$

Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.

b.

Gọi $d$ là ƯCLN $(4n+6, 6n+7)$

$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$

$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$

Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.

$\Rightarrow d=1$

$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.

Bình luận (0)
LN
Xem chi tiết
HA
Xem chi tiết
LD
25 tháng 2 2021 lúc 20:23

Gọi ƯC( 2n + 3 ; 4n + 2 ) = d

=> 2n + 3 ⋮ d và 4n + 2 ⋮ d

=> 4n + 6 ⋮ d và 4n + 2 ⋮ d

=> 4n + 6 - ( 4n + 2 ) ⋮ d

=> 4n + 6 - 4n - 2 ⋮ d

=> 4 ⋮ d

=> d ∈ { 1 ; 2 ; 4 }

d = 1 ( nhận )

d = 2 ( loại ) do 2n + 3 ⋮/ 2

d = 4 loại do 2n + 3 ⋮/ 4

=> d = 1

=> ƯCLN( 2n + 3 ; 4n + 2 ) = 1

hay \(\frac{2n+3}{4n+2}\)là phân số tối giản ( dpcm )

Bình luận (0)
 Khách vãng lai đã xóa
NQ
25 tháng 2 2021 lúc 20:37

Ta có 

\(2n+3\text{ là số lẻ với mọi n}\)

\(4n+2\text{ là số chẵn với mọi n}\) do đó \(\left(2n+3,4n+2\right)=1\text{ hay phân số đã cho là phân số tối giản}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
DH
7 tháng 2 2016 lúc 10:29

a ) Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

⇒ n + 1 ⋮ ⇒ 2.( n + 1 ) ⋮ d

⇒ 2n + 3 ⋮ ⇒ 1 . ( 2n + 3 ) ⋮ d

[ 2.( n + 1 ) - 1.( 2n + 3 ) ] ⋮ d

[ ( 2n + 2 ) - ( 2n + 3 ) ] ⋮ d

⇒ ⋮ ⇒ d = 1

Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên \(\frac{n+1}{2n+3}\) là phân số tối giản

Các câu khác tương tự 

Bình luận (0)
NH
Xem chi tiết
NT
25 tháng 11 2023 lúc 8:40

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2

Bình luận (0)
KN
Xem chi tiết
VD
7 tháng 3 2023 lúc 20:12

a) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

Bình luận (0)
PL
17 tháng 7 2023 lúc 14:15

) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

 Đúng(0)   Cao yến Chi Cao yến Chi14 tháng 4 2020 lúc 12:42  

bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản

A=2n+1/2n+2

B=2n+3/3n+5

Bài 2: 

a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản

b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản

giúp mk với 

mk sẽ tick cho!!

Bình luận (0)