CMR phân số 2n+3/4n+8 tối giản với mọi n thuộc N
CMR với mọi n thuộc N thì phân số sau là phân số tối giản
a, n + 1 / 2n + 3
b, 2n + 3 / 4n + 8
c, 3n + 2 / 5n + 3
a) Đặt \(d=\left(n+1,2n+3\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)
Suy ra \(d=1\).
Do đó ta có đpcm.
b) Bạn làm tương tự ý a).
c) Đặt \(d=\left(3n+2,5n+3\right)\).
Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).
Suy ra \(d=1\).
CMR với mọi số tự nhiên n thì\(\frac{2n+3}{4n+8}\)là phân số tối giản
Gọi p là ƯC(2n+3,4n+8)
Ta có
2n+3 chia hết cho p <=> 1(2n+3) chia hết cho p
4n+8 chia hết cho p <=> (4n+8):2 chia hết cho p
=> (4n+8):2 - 1(2n+3) chia hết cho p
=> 2n+4 - 2n+3 chia hết cho p
=> 1 chia hết cho p
=> p thuộc Ư(1)
=> 2n+3 / 4n+8 là phân số tối giản
Chứng tỏ với mọi n thuộc N* thì các phân số sau sẽ tối giản:
a)2n+3/6n+8
b)4n+1/14n+3
CMR các phân số sau tối giản với mọi n ϵ Z:
a.n+3/2n+7
b.4n+6/6n+7
Lời giải:
a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$
$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$
$\Rightarrow 2n+7-2(n+3)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.
b.
Gọi $d$ là ƯCLN $(4n+6, 6n+7)$
$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$
$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$
Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.
$\Rightarrow d=1$
$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.
CMR các phân số sau lá phân số tối giản : n+4/n+3 ; 2n+3/4n=7 (n thuộc N)
cho n thuộc N:
CMR PHÂN SỐ 2n+3/4n+2 là phân số tối giản
Gọi ƯC( 2n + 3 ; 4n + 2 ) = d
=> 2n + 3 ⋮ d và 4n + 2 ⋮ d
=> 4n + 6 ⋮ d và 4n + 2 ⋮ d
=> 4n + 6 - ( 4n + 2 ) ⋮ d
=> 4n + 6 - 4n - 2 ⋮ d
=> 4 ⋮ d
=> d ∈ { 1 ; 2 ; 4 }
d = 1 ( nhận )
d = 2 ( loại ) do 2n + 3 ⋮/ 2
d = 4 loại do 2n + 3 ⋮/ 4
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 2 ) = 1
hay \(\frac{2n+3}{4n+2}\)là phân số tối giản ( dpcm )
Ta có
\(2n+3\text{ là số lẻ với mọi n}\)
\(4n+2\text{ là số chẵn với mọi n}\) do đó \(\left(2n+3,4n+2\right)=1\text{ hay phân số đã cho là phân số tối giản}\)
CMR các phân số sau đều tối giản với mọi số TN n
a) n+1/2n+3
b)2n+3/4n+8
c)3n+2/5n+3
giúp mình với..........v...........................v..............................v.............................v...........................v
a ) Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
⇒ n + 1 ⋮ d ⇒ 2.( n + 1 ) ⋮ d
⇒ 2n + 3 ⋮ d ⇒ 1 . ( 2n + 3 ) ⋮ d
⇒ [ 2.( n + 1 ) - 1.( 2n + 3 ) ] ⋮ d
⇒ [ ( 2n + 2 ) - ( 2n + 3 ) ] ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên \(\frac{n+1}{2n+3}\) là phân số tối giản
Các câu khác tương tự
Chứng minh rằng với mọi số nguyên n thì phân số P= 2n + 3/4n + 8 là phân số tối giản
Gọi d=ƯCLN(2n+3;4n+8)
=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)
=>\(2⋮d\)
mà 2n+3 lẻ
nên d=1
=>ƯCLN(2n+3;4n+8)=1
=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2
CMR các phân số sau là các phân số tối giản
a, n+1 / 2n+3 b, 2n+3/4n+8
a) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d
2n+3 ⋮ d
=> (2n+3)-(2n+2) ⋮ d => 1⋮ d
Mà d ∈ N* => d =1
=> ƯCLN(n+1, 2n+3) = 1
Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)
b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)
=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d
4n+8 ⋮ d
=> (4n+8)-(4n+6) ⋮ d => 2⋮ d
Mà d ∈ N* => d =1; 2
Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2
=> d ≠ 2 => d = 1
=> ƯCLN(2n+3, 4n+8)=1
Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm)
) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d
2n+3 ⋮ d
=> (2n+3)-(2n+2) ⋮ d => 1⋮ d
Mà d ∈ N* => d =1
=> ƯCLN(n+1, 2n+3) = 1
Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)
b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)
=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d
4n+8 ⋮ d
=> (4n+8)-(4n+6) ⋮ d => 2⋮ d
Mà d ∈ N* => d =1; 2
Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2
=> d ≠ 2 => d = 1
=> ƯCLN(2n+3, 4n+8)=1
Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm)
Cao yến Chi14 tháng 4 2020 lúc 12:42bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!