Những câu hỏi liên quan
H24
Xem chi tiết
NT
18 tháng 2 2016 lúc 20:48

Bạn à toán tìm cực trị ( tìm GTLN, GTNN, GTTĐ ) ko có trong chương trình toán 6 đâu.

Tìm cực trị chỉ có cách đơn giản nhất như câu trả lời cũ của mình thôi.

Bạn có thể kiểm chứng trên mạng bằng cách gõ: tìm giá trị lớn nhất, giá trị nhỏ nhất

Bình luận (0)
LU
Xem chi tiết
H24
Xem chi tiết
NN
26 tháng 12 2022 lúc 14:50

đợi tý

Bình luận (0)
WS
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Bình luận (0)
DM
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Bình luận (0)
HT
Xem chi tiết
NL
Xem chi tiết
VN
10 tháng 6 2017 lúc 14:41

\(A=0,4\left(3\right)+0,6\left(2\right)\cdot2\frac{1}{2}-\frac{\frac{1}{2}+\frac{1}{3}}{0,5\left(8\right)}:\frac{50}{53}\)

\(A=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{3+2}{6}:\frac{53}{90}\cdot\frac{53}{50}\)

\(A=\frac{13}{30}+\frac{14}{9}-\frac{5}{6}\cdot\frac{90}{53}\cdot\frac{53}{50}\)

\(A=\frac{39}{90}+\frac{140}{90}-\frac{2}{3}\)

\(A=\frac{179}{90}-\frac{60}{90}=\frac{119}{90}\)

\(A=1,3\left(2\right)\)

Bình luận (0)
BB
Xem chi tiết
ML
Xem chi tiết
TM
7 tháng 5 2017 lúc 12:03

\(A=\frac{3n^2+25}{n^2+5}=\frac{3n^2+15}{n^2+5}+\frac{10}{n^2+5}=\frac{3\left(n^2+5\right)}{n^2+5}+\frac{10}{n^2+5}=3+\frac{10}{n^2+5}\)

Vì \(n^2\ge0\Rightarrow n^2+5\ge5\Rightarrow\frac{10}{n^2+5}\le2\Rightarrow A=3+\frac{10}{n^2+5}\le5\)

=>Amax=5 <=> n2=0 <=> n=0

Vậy GTLN của A là 5 tại n=0

Bình luận (0)
LL
7 tháng 5 2017 lúc 10:04

A=3n2+25/n2+5

a=3(n2+5)+20/n2+5

           20

a=3                           

       n2+5

thuộc U của  20 {1,2,4,5,,10,20}

thay n2=12+5=6

thay n2=2

tiep theo thay =4,=5,=10,=20 nha bn

Bình luận (0)
ML
7 tháng 5 2017 lúc 10:44

Tìm GTLN mà bn, mà còn cả Ư nguyên âm nữa cơ, bn làm k đầy đủ r. Dù sao cũng cảm ơn bn

Bình luận (0)
LH
Xem chi tiết
HT
5 tháng 2 2021 lúc 15:15

undefined

Bình luận (0)
LH
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

Bình luận (0)
VP
Xem chi tiết
NT
5 tháng 10 2021 lúc 23:23

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

Bình luận (0)