M=x/x+y+z+y/x+y+t+z/y+z+t+t/x+z+t với x,y,z,t thuộc N .Chứng minh M^10<1025
o l m . v n
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x,y,z,t thuộc N* .chứng minh :M= x/x+y+z + y/x+y+t + z/y+z+t + t/x+z+t
chứng minh M có giá trị không phải là số tự nhiên
Cho biểu thức M = \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) với x,y,z,t là các số tự nhiên khác 0 . Chứng minh \(M^{10}< 1025\)
cho biểu thức M=x/(x+y+z) +y/(x+y+t) +z/(y+z+t) +t/(x+z+t) với x,y,z,t là các số tự nhiên khác 0. Chứng minh M10 <1025
Ta chứng minh tính chất \(\frac{a}{b}< 1\) suy ra \(\frac{a+m}{b+m}>\frac{a}{b}\)
Ta có \(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+m}{b+m}=\frac{b-a}{b+m}\)
Vì \(\frac{b-a}{b}>\frac{b-a}{b+m}=>\frac{a}{b}< \frac{a+m}{b+m}\)
Áp dụng thính chất trên ta có
\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+t+z}+\frac{z+x}{y+z+t+x}+\frac{t+y}{x+z+t+y}\)
=> M < 2 => M10 <210=1024 <1025
Vậy M10 <1025
Cho x, y, z, t thuộc N* . Chứng minh rằng:
M = x/( x + y + z ) + y/ ( x + y + t) + z/ ( y + z + t ) + t/ ( x + z + t ) có giá trị không phải là số tự nhiên
x/(x+y+z)>x/(x+y+z+t)
tương tự cho 3 cái còn lại
=>M>x/(x+y+z+t)+y/(x+y+z+t)+z/(x+y+z+t)+t/(x+y+z+t)
=>m>(x+y+z+t)/(x+y+z+t)
=>M>1
x/(x+y+z)<1=>(x+t)/(x+y+t+z)>x/(x+y+z)
tương tự => M<2(x+y+z+t)/(x+y+z+t)
=> M<2
ta có 2>M>1=> m ko phải là số tự nhiên
tại sao x/(x+y+z)<1 thì bạn có thể suy ra (x+t)/(x+y+t+z)>x/(x+y+z)
mình thấy (x+t)/(x+y+z+t)cũng lớn hơn 1 cơ mà ( thấy vô lý kiểu gì ý)
Chứng minh rằng : M = x/x+y+z + y/x+y+t +z/y+z+t + t/x+z+t có giá trị không phải là số tự nhiên.(x,y,z,t thuộc N sao)
Chứng minh rằng: \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\) không là số tự nhiên với mọi x, y, z, t thuộc N*.
cho M=(x/x+y+z)+(y/x+y+t)+(z/y+z+t)+(t/x+z+t) với x,y,z là các số tự nhiên khác 0
chứng minh M10<1025
v:Câu hỏi của Bùi Quang Sang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
cho x,y,z,t thuộc N* chứng minh :M= x/x+y+z + y/x+y+t + z/y+z+t + t/x+z+t có giá trị không phải là số tự nhiên
cho biểu thức M= x/x+y=y+y/x+y+t+x/y+z+t=t/x+z+t với x;y;z ;t là các số tự nhiên khâc 0. chứng minh M^10 bé hơn 1025
Bạn viết đề mà mình không hiểu gì luôn! Xem lại đề và đổi cách trình bày đi!!
cho x,y,t,z thuộc N*
chứng minh M=\(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)có giá trị ko phải số tự nhiên
\(M>\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\)
\(\dfrac{a}{b}< 1\Rightarrow\) \(\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (Bạn chứng minh qua nhân chéo nhé)
\(\Rightarrow M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}=2\)
Do \(1< M< 2\) mà \(1\) và \(2\) là hai số tự nhiên liên tiếp
\(\Rightarrow M\notin\) N