Những câu hỏi liên quan
YN
Xem chi tiết
DA
Xem chi tiết
NY
Xem chi tiết
NC
23 tháng 3 2017 lúc 19:57

ai đó kết bạn với mình nha mình hết lời rùi

Bình luận (0)
HH
Xem chi tiết
NN
Xem chi tiết
H24
26 tháng 3 2016 lúc 8:37

Gọi B là biểu thức đã cho.
Dễ dàng chứng minh:
\frac{4}{1.3.5}=\frac{1}{1.3}-\frac{1}{3.5}\\\frac{4}{3.5.7}=\frac{1}{3.5}-\frac{1}{5.7}
...
Ta có:
B
= 9(\frac{4}{1.3.5}+\frac{4}{3.5.7}...+\frac{4}{25.2  7.29})\\=9(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}...+\frac{1}{25.27}-\frac{1}{27.29})\\= 9(\frac{1}{1.3}-\frac{1}{27.29})\\= 3 - \frac{1}{27.29}  3

Bình luận (0)
H24
Xem chi tiết
VT
6 tháng 2 2020 lúc 12:21

Ta có:

\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)

\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)

\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)

\(\Rightarrow A=3-\frac{1}{87}\)

\(3-\frac{1}{87}< 3.\)

\(\Rightarrow A< 3\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
T2
5 tháng 4 2019 lúc 22:18

chứng minh B làm sao z

Bình luận (0)
DA
Xem chi tiết
ML
26 tháng 6 2015 lúc 17:17

Áp dụng: \(\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}\)

\(\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}

Bình luận (0)
NA
Xem chi tiết
NH
7 tháng 5 2017 lúc 13:00

Ta có :

\(B=\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+...............+\dfrac{36}{25.27.29}\)

\(B=9\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+\dfrac{4}{5.7.9}+.............+\dfrac{4}{25.27.29}\right)\)

\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+\dfrac{1}{5.7}-\dfrac{1}{7.9}+...........+\dfrac{1}{25.27}-\dfrac{1}{27.29}\right)\)

\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{27.29}\right)\)

\(B=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\)

\(B=9.\dfrac{1}{3}-9.\dfrac{1}{783}\)

\(B=3-\dfrac{9}{783}< 3\)

\(\Rightarrow B< 3\rightarrowđpcm\)

Bình luận (0)