Định lý Fermat lớn:
x^2+y^2=Z^2
chứng minh định lý fermat xn+yn=zn (n>2) ko tìm được x,y,z nguyên dương để thỏa mãn với mọi n>2
Định lý Fermat lớn đã được chứng minh
NHÌN LẠI ĐỊNH LÝ FERMAT LỚN
ĐỊNH LÝ FERMAT LỚN PHÁT BIỂU NHƯ SAU: x^n + y^n = z^n nếu n > 2 không có nghiệm nguyên dương.
Wikipedia Bách khoa toàn thư mở có ghi: Vào khoảng năm 1637, Fermat đã viết trong một quyển sách rằng phương trình tổng quát là a^n + b^n = c^n, không có nghiệm nào là số nguyên dương, nếu n là số nguyên lớn hơn 2. Trong hai thế kỷ tiếp theo (1637-1839), phỏng đoán đã được chứng minh chỉ với các số nguyên tố 3, 5 và 7. Nhà toán học vĩ đại người Thụy Sĩ Leonhard Euler (1707 – 1783) đã chứng minh định lý cho trường hợp n=3 và n=4. Năm 1828, Dirichlet chứng minh cho trường hợp n=5. Vào những năm 1840, Gabriel Lamé chứng minh với n=7. 200 năm sau Fermat, định lí mới được chứng minh với n=3, 4, 5, 6 và 7. Định lý quá khó và Bell trong cuốn sách “Bài toán cuối cùng” đã phải viết rằng: có lẽ nền văn minh của chúng ta cáo chung trước khi các nhà toán học tìm ra lời giải cho bài toán. Tháng 5 năm 1995 đăng lời giải của Andrew Wiles trên Annals ofMathemas (Đại học Princeton).
Tháng 8 năm 1995 hội thảo ở Đại học Boston, giới toán học công nhận chứng minh là đúng.
Helen G. Grundman, giáo sư toán trường Bryn Mawr College, đánh giá tình hình của cách chứng minh đó như sau:
"Tôi nghĩ là ta có thể nói, vâng, các nhà toán học hiện nay đã bằng lòng với cách chứng minh Định lý lớn Fermat đó. Tuy nhiên, một số sẽ cho là chứng minh đó của một mình Wiles mà thôi. Thật ra đó là công trình của nhiều người. Wiles đã có đóng góp đáng kể và là người kết hợp các công trình lại với nhau thành cái mà ông đã nghĩ là một cách chứng minh. Mặc dù cố gắng khởi đầu của ông được phát hiện sau đó là có sai lầm, Wiles và người phụ tá Richard Taylor đã sửa lại được, và nay đó là cái mà ta tin là cách chứng minh đúng Định lý lớn Fermat."
"Chứng minh mà ta biết hiện nay đòi hỏi sự phát triển của cả một lãnh vực toán học chưa biết tới vào thời Fermat. Bản thân định lý được phát biểu rất dễ dàng và vì vậy xem ra có vẻ đơn giản một cách giả tạo; bạn không cần biết rất nhiều về toán để hiểu bài toán. Tuy nhiên, để rồi nhận ra rằng, theo kiến thức tốt nhất của bạn, cần phải biết rất nhiều về toán mới có thể giải được nó. Vẫn là một câu hỏi chưa có lời đáp rằng liệu có hay không một cách chứng minh Định lý lớn Fermat mà chỉ liên quan tới toán học và các phương pháp đã có vào thời Fermat. Chúng ta không có cách nào trả lời trừ phi ai đó tìm ra một chứng minh như vậy."
Với cách chứng minh của wiles hơn 200 trang tôi nghĩ rằng nhiều người không hiểu được, thật là rắm rối. Khi đọc định lý lớn của Fermat tôi có nhận xét như sau;1. NHẬN XÉT MỞ ĐẦU: Thấy rằng nếu phương trình x^n + y^n = z^n (1) có nghiệm < 0 thì có thể xảy ra các trường hợp: -x^n -y^n = -z^n , -x^n + y^n = -z^n , x^n - y^n = -z^n, khi nhân hai vế của các phương trình trên với -1 hoặc chuyển vế các số hạng thì nghiệm âm thành nghiệm dương và ngược lại nghiệm dương thành nghiệm âm và chuyển đổi vai trò xủa x, y, x cho nhau thì nghiệm của x, y, z cũng là nghiệm của phương trình (1). Vì vậy chỉ cần xét nghiệm nguyên dương sẽ suy ra nghiệm nguyên âm.
Phương trình (1) có nghiệm nguyên tầm thường là (x, y, z) = (0, 0, 0), (1, 0, 1), (0, 1, 1) với mọi n
Nếu n = 1 khi đó x + y = z phương trình có vô số nghiệm.
Nếu x = y suy ra 2x^n = z^n suy ra z =x nhân căn bậc n của 2, phương trình không có nghiệm nguyên khi n > 1.
Nếu x hoặc y bằng 0 thì y = z hoặc x = z với mọi n.
x và y có vai trò như nhau nên ta có thể thay x cho y và thay y cho x.
Nên dưới đây ta chỉ còn xét x khác y và x, y, z là các số nguyên dương. Ta thấy x,y < z, nếu x, y lớn hơn hoặc bằng z phương trình vô nghiệm.
Tách y = y1 + y2; y1, y2 là các số nguyên dương để x + y1 = z (nếu y1 = 0 thì x = z và y = 0).
Từ phương trình (1) ta có: x^n + (y1 + y2 )^n = (x + y1)^n (2).
Xét n = 2, từ (2) suy ra x^2 + (y1 + y2)^2 = (x + y1)^2 (3) tương đương với y2^2 + 2y1y2 = 2y1x.
Vì 2y1x là số chẵn nên y2 là số chẵn và để x là số nguyên thì y2^2 chia hết cho 2y1 suy ra y2 = 2y1k với k thuộc N*. Do đó y lớn hơn hoặc bằng 3
Ta có công thức nghiệm của phương trình (3):
X = (y2^2 + 2y1y2)/2y1; với y2 = 2y1k và y1, k thuộc N*.Y = y1 + y2
Z = x + y1
Phương trình có vô số nghiệm.
Ví dụ:
Nếu y1 = 1 ta có z = x+1 và y = 1 + y2.
Khi y1 = 1 phương trình (3) có công thức tính nghiệm:
x = (y2^2 + 2y2)/2
y = y2 + 1
z = x + 1
Khi y1 = 1, y2 = 2k thì y22 + 2y2 chia hết cho 2 nên phương trình có nghiệm nguyên với mọi y = 2k +1
k = 1 thì y2 = 2 ta có x = 4, y = 3, z = 5; k = 2 thì y2 = 4 ta có x = 12, y = 5, z = 13; k = 3 thì y2 = 6 ta có x = 24, y = 7, z = 25; khi k = 4 thì x = 40, y = 9, z = 41;…
Nếu y1 = 2, y2 = 4k
X = ( y2^2 + 4y2 )/4 với y2 = 4k, k thuộc N*.
Y = 2 + y2 = 2 + 4k
Z = x + 2
Khi k = 1 thì y2 = 4, x = 8, y = 6, z = 10, k = 2 thì x = 24, y = 10, z = 26; k = 3 thì x = 48, y = 14, z = 50;…
Nhưng y2 = 2k thì y2^2 = (2k)^2 cũng chi hết cho 2y1 = 4 nên phương trình cũng có nghiệm khi y1 = 2 và y2 = 2k, ta có công thức nghiệm là:
X = [(2k)^2 + 4k]/4 , k = 1, 2, 3,…Y = 2 + 2k
Z = x + 2
Khi k = 1, y2 = 2, x = 3, y = 4, z = 5 nếu đổi x thành y thì nghiệm này là nghiệm của phương trình khi y1 = 1.
Khi k = 2 thì y2 = 4, x = 8, y = 6, z = 10; khi k = 3 thì y2 = 6, x = 15, y = 8, z = 17; khi k = 4 thì x = 24, y = 10, z = 26;…
Nếu tách x = x1 + x2 để y + x1 = z thì phương trình (1) thành ( x1 + x2 )^2 + y2 = ( y + x1 )^2 (4) khi n = 2, ta có công thức nghiệm của phương trình (4):
X = x2 + x2,
Y = (x2^2 + 2x1x2 )/2x1
Z = y + x1 .
Với y là số nguyên dương lớn hơn hoặc bằng 3 phương trình (3) luôn có nghiệm. Vấn đề II.8 của cuốn sách Arithmea được viết bởi Diophantus hỏi làm thế nào một số bình phương nhất định được chia thành hai số bình phương khác; nói cách khác, với một số z nhất định, tìm hai số x và y sao cho z^2 = x^2 + y^2. Dựa vào công thức nghiệm của phương trình (3) ta có thể tìm được lời giải.
2. NGHIỆM CỦA PHƯƠNG TRÌNH (1) KHI n > 2.
Loại trừ n < 3; x = y, và x, y, z có nghiệm bằng 0 đã xét trên đây, ta chỉ cònxét x khác y. Không mất tính tổng quát ta cho x > y ( vì nếu x < y thì thay thế x cho y). Do x > y nêu ta đặt t = x - y suy ra x = y + t và đặt y1 + y2 = y sao cho x + y1 = z ( x, y < z). Vì x, y, z là các số nguyên dương nên t, y1, y2 là các số nguyên dương.
Khi n = 3 ta thay y1 và t vào phương trình (1) ta có : x^3 + y^3 = (x + y1)^3 suy ra x^3 + y^3 = x^3 + 3x^2y1 + 3xy1^2 + y1^3 suy ra y^3 = 3(y + t)^2y1 + 3(y + t)y1^2 + y1^3 suy ra y^3 = 3y^2y1 + 6yty1 + 3yy1^2 + y1^3 + 3y1^2t + 3t^2y1 + t^3 - t^3
y^3 = 3y^2y1 + 6yty1 + 3yy1^2 + (t + y1)^3 - t^3
Suy ra y^3 + t^3 - (t + y1)^3 = 3y^2y1 + 6yty1 + 3yy1^2 (5)
Khi n = 4 thay y1 và t vào phương trình (1) ta có: x^4 + y^4 = (x + y1)^4
x^4 + y^4 = x^4 + 4x^3y1 + 6x^2y1^2 + 4xy1^3 + y1^4 y^4 = 4(y + t)^3y1 + 6(y + t)^2y12 + 4(y + t)y1^3 + y1^4
y^4 = 4y^3y1 + 12y^2ty1 + 12yt^2y1 + 4t^3y1 + 6y^2y1^2 + 12yty1^2 + 6t^2y1^2 + 4yy1^3 + 4ty1^3 + y1^4 + t^4 - t^4
Suy ra y^4 + t^4 - (t + y1)^4 = 4y^3y1 + 12y^2ty1 + 12yt2y1 + 6y^2y1^2 + 12yty1^2 + 4yy1^3(6)
Khi n =n, thay y1 và t vào phương trình (1) ta có;
Y^n + t^n - (t + y1)^n = G (7) với G là một đa thức gồm tổng các số hạng có hệ số là số nguyên dương và các thừa số y, y1, t.
Giả sử phương trình (1) có nghiệm nguyên dương thì x, y, z, y1, t là các số nguyên dương, khi đó vế phải và vế trái của các phương trình (5), (6) và (7) bằng 0 khi và chỉ khi y, y1, t đồng thời bằng 0 nên x, y, z đồng thời bằng 0 không phải là nghiệm nguyên dương. Do x, y, z, y1, t là các số nguyên dương nên vế phải của các phương trình (5), (6) và (7) lớn hơn không. Suyra :
y^3 + t^3 - (t + y1)^3 > 0 y^3 + t^3 > (t + y1)^3
y^4 + t^4 - (t + y1)^4 > 0 y^4 + t^4 > (t + y1)^4
Y^n + t^n - (t + y1)^n > 0 Y^n + t^n > (t + y1)^n
Ta thấy không có số nguyên dương nào của t để : y^3 + t^3 = (t + y1)^3 , y^4 + t^4 = (t + y1)^4 và y^n + t^n =(t + y1)^n (8) do đó cũng không có số nguyên dương nào của x để y^3 + x^3 = (x + y1)^3, y^4 + x^4 = (x + y1)^4 và y^n + x^n = (x + y1)^n. Mâu thuẫn với giả thiết x, y, x có nghiệm nguyên dương.
Ngược lại giả sử phương trình (8) có nghiệm nguyên dương ta thay giá trị của t = x vào phương trình (1) thì phương trình (1) có nghiệm nguyên dương nhưng t = x trái với điều kiện t < x nên mâu thuẫn.
Vậy phương trình x^n + y^n = z^n không có nghiệm nguyên dương khi n =3, n = 4 và một cách tổng quát không có nghiệm nguyên dương khi n lớn hơn hoặc bằng 3. Trên đây có phải là chứng minh Định lý Fermat lớn hay không.
đây phải bài lớp 6 hok vậy mình cũng hok lớp 6 mà chưa gặp câu này bao giờ
thực sự bài này lớp 6 có thể giải được nha nhưng ko biết cách làm của
chứng minh định lý fermat sau: x^n+y^n=z^n (n>2,x,y,z nguyên dương) ko thể tìm được x,y,z nguyên dương nào thỏa mãn
Định lý Fermat lớn đã được chứng minh
NHÌN LẠI ĐỊNH LÝ FERMAT LỚN
ĐỊNH LÝ FERMAT LỚN PHÁT BIỂU NHƯ SAU: x^n + y^n = z^n nếu n > 2 không có nghiệm nguyên dương.
Wikipedia Bách khoa toàn thư mở có ghi: Vào khoảng năm 1637, Fermat đã viết trong một quyển sách rằng phương trình tổng quát là a^n + b^n = c^n, không có nghiệm nào là số nguyên dương, nếu n là số nguyên lớn hơn 2. Trong hai thế kỷ tiếp theo (1637-1839), phỏng đoán đã được chứng minh chỉ với các số nguyên tố 3, 5 và 7. Nhà toán học vĩ đại người Thụy Sĩ Leonhard Euler (1707 – 1783) đã chứng minh định lý cho trường hợp n=3 và n=4. Năm 1828, Dirichlet chứng minh cho trường hợp n=5. Vào những năm 1840, Gabriel Lamé chứng minh với n=7. 200 năm sau Fermat, định lí mới được chứng minh với n=3, 4, 5, 6 và 7. Định lý quá khó và Bell trong cuốn sách “Bài toán cuối cùng” đã phải viết rằng: có lẽ nền văn minh của chúng ta cáo chung trước khi các nhà toán học tìm ra lời giải cho bài toán. Tháng 5 năm 1995 đăng lời giải của Andrew Wiles trên Annals ofMathemas (Đại học Princeton).
Tháng 8 năm 1995 hội thảo ở Đại học Boston, giới toán học công nhận chứng minh là đúng.
Helen G. Grundman, giáo sư toán trường Bryn Mawr College, đánh giá tình hình của cách chứng minh đó như sau:
"Tôi nghĩ là ta có thể nói, vâng, các nhà toán học hiện nay đã bằng lòng với cách chứng minh Định lý lớn Fermat đó. Tuy nhiên, một số sẽ cho là chứng minh đó của một mình Wiles mà thôi. Thật ra đó là công trình của nhiều người. Wiles đã có đóng góp đáng kể và là người kết hợp các công trình lại với nhau thành cái mà ông đã nghĩ là một cách chứng minh. Mặc dù cố gắng khởi đầu của ông được phát hiện sau đó là có sai lầm, Wiles và người phụ tá Richard Taylor đã sửa lại được, và nay đó là cái mà ta tin là cách chứng minh đúng Định lý lớn Fermat."
"Chứng minh mà ta biết hiện nay đòi hỏi sự phát triển của cả một lãnh vực toán học chưa biết tới vào thời Fermat. Bản thân định lý được phát biểu rất dễ dàng và vì vậy xem ra có vẻ đơn giản một cách giả tạo; bạn không cần biết rất nhiều về toán để hiểu bài toán. Tuy nhiên, để rồi nhận ra rằng, theo kiến thức tốt nhất của bạn, cần phải biết rất nhiều về toán mới có thể giải được nó. Vẫn là một câu hỏi chưa có lời đáp rằng liệu có hay không một cách chứng minh Định lý lớn Fermat mà chỉ liên quan tới toán học và các phương pháp đã có vào thời Fermat. Chúng ta không có cách nào trả lời trừ phi ai đó tìm ra một chứng minh như vậy."
Với cách chứng minh của wiles hơn 200 trang tôi nghĩ rằng nhiều người không hiểu được, thật là rắm rối. Khi đọc định lý lớn của Fermat tôi có nhận xét như sau;1. NHẬN XÉT MỞ ĐẦU: Thấy rằng nếu phương trình x^n + y^n = z^n (1) có nghiệm < 0 thì có thể xảy ra các trường hợp: -x^n -y^n = -z^n , -x^n + y^n = -z^n , x^n - y^n = -z^n, khi nhân hai vế của các phương trình trên với -1 hoặc chuyển vế các số hạng thì nghiệm âm thành nghiệm dương và ngược lại nghiệm dương thành nghiệm âm và chuyển đổi vai trò xủa x, y, x cho nhau thì nghiệm của x, y, z cũng là nghiệm của phương trình (1). Vì vậy chỉ cần xét nghiệm nguyên dương sẽ suy ra nghiệm nguyên âm.
Phương trình (1) có nghiệm nguyên tầm thường là (x, y, z) = (0, 0, 0), (1, 0, 1), (0, 1, 1) với mọi n
Nếu n = 1 khi đó x + y = z phương trình có vô số nghiệm.
Nếu x = y suy ra 2x^n = z^n suy ra z =x nhân căn bậc n của 2, phương trình không có nghiệm nguyên khi n > 1.
Nếu x hoặc y bằng 0 thì y = z hoặc x = z với mọi n.
x và y có vai trò như nhau nên ta có thể thay x cho y và thay y cho x.
Nên dưới đây ta chỉ còn xét x khác y và x, y, z là các số nguyên dương. Ta thấy x,y < z, nếu x, y lớn hơn hoặc bằng z phương trình vô nghiệm.
Tách y = y1 + y2; y1, y2 là các số nguyên dương để x + y1 = z (nếu y1 = 0 thì x = z và y = 0).
Từ phương trình (1) ta có: x^n + (y1 + y2 )^n = (x + y1)^n (2).
Xét n = 2, từ (2) suy ra x^2 + (y1 + y2)^2 = (x + y1)^2 (3) tương đương với y2^2 + 2y1y2 = 2y1x.
Vì 2y1x là số chẵn nên y2 là số chẵn và để x là số nguyên thì y2^2 chia hết cho 2y1 suy ra y2 = 2y1k với k thuộc N*. Do đó y lớn hơn hoặc bằng 3
Ta có công thức nghiệm của phương trình (3):
X = (y2^2 + 2y1y2)/2y1; với y2 = 2y1k và y1, k thuộc N*.Y = y1 + y2
Z = x + y1
Phương trình có vô số nghiệm.
Ví dụ:
Nếu y1 = 1 ta có z = x+1 và y = 1 + y2.
Khi y1 = 1 phương trình (3) có công thức tính nghiệm:
x = (y2^2 + 2y2)/2
y = y2 + 1
z = x + 1
Khi y1 = 1, y2 = 2k thì y22 + 2y2 chia hết cho 2 nên phương trình có nghiệm nguyên với mọi y = 2k +1
k = 1 thì y2 = 2 ta có x = 4, y = 3, z = 5; k = 2 thì y2 = 4 ta có x = 12, y = 5, z = 13; k = 3 thì y2 = 6 ta có x = 24, y = 7, z = 25; khi k = 4 thì x = 40, y = 9, z = 41;…
Nếu y1 = 2, y2 = 4k
X = ( y2^2 + 4y2 )/4 với y2 = 4k, k thuộc N*.
Y = 2 + y2 = 2 + 4k
Z = x + 2
Khi k = 1 thì y2 = 4, x = 8, y = 6, z = 10, k = 2 thì x = 24, y = 10, z = 26; k = 3 thì x = 48, y = 14, z = 50;…
Nhưng y2 = 2k thì y2^2 = (2k)^2 cũng chi hết cho 2y1 = 4 nên phương trình cũng có nghiệm khi y1 = 2 và y2 = 2k, ta có công thức nghiệm là:
X = [(2k)^2 + 4k]/4 , k = 1, 2, 3,…Y = 2 + 2k
Z = x + 2
Khi k = 1, y2 = 2, x = 3, y = 4, z = 5 nếu đổi x thành y thì nghiệm này là nghiệm của phương trình khi y1 = 1.
Khi k = 2 thì y2 = 4, x = 8, y = 6, z = 10; khi k = 3 thì y2 = 6, x = 15, y = 8, z = 17; khi k = 4 thì x = 24, y = 10, z = 26;…
Nếu tách x = x1 + x2 để y + x1 = z thì phương trình (1) thành ( x1 + x2 )^2 + y2 = ( y + x1 )^2 (4) khi n = 2, ta có công thức nghiệm của phương trình (4):
X = x2 + x2,
Y = (x2^2 + 2x1x2 )/2x1
Z = y + x1 .
Với y là số nguyên dương lớn hơn hoặc bằng 3 phương trình (3) luôn có nghiệm. Vấn đề II.8 của cuốn sách Arithmea được viết bởi Diophantus hỏi làm thế nào một số bình phương nhất định được chia thành hai số bình phương khác; nói cách khác, với một số z nhất định, tìm hai số x và y sao cho z^2 = x^2 + y^2. Dựa vào công thức nghiệm của phương trình (3) ta có thể tìm được lời giải.
2. NGHIỆM CỦA PHƯƠNG TRÌNH (1) KHI n > 2.
Loại trừ n < 3; x = y, và x, y, z có nghiệm bằng 0 đã xét trên đây, ta chỉ cònxét x khác y. Không mất tính tổng quát ta cho x > y ( vì nếu x < y thì thay thế x cho y). Do x > y nêu ta đặt t = x - y suy ra x = y + t và đặt y1 + y2 = y sao cho x + y1 = z ( x, y < z). Vì x, y, z là các số nguyên dương nên t, y1, y2 là các số nguyên dương.
Khi n = 3 ta thay y1 và t vào phương trình (1) ta có : x^3 + y^3 = (x + y1)^3 suy ra x^3 + y^3 = x^3 + 3x^2y1 + 3xy1^2 + y1^3 suy ra y^3 = 3(y + t)^2y1 + 3(y + t)y1^2 + y1^3 suy ra y^3 = 3y^2y1 + 6yty1 + 3yy1^2 + y1^3 + 3y1^2t + 3t^2y1 + t^3 - t^3
y^3 = 3y^2y1 + 6yty1 + 3yy1^2 + (t + y1)^3 - t^3
Suy ra y^3 + t^3 - (t + y1)^3 = 3y^2y1 + 6yty1 + 3yy1^2 (5)
Khi n = 4 thay y1 và t vào phương trình (1) ta có: x^4 + y^4 = (x + y1)^4
x^4 + y^4 = x^4 + 4x^3y1 + 6x^2y1^2 + 4xy1^3 + y1^4 y^4 = 4(y + t)^3y1 + 6(y + t)^2y12 + 4(y + t)y1^3 + y1^4
y^4 = 4y^3y1 + 12y^2ty1 + 12yt^2y1 + 4t^3y1 + 6y^2y1^2 + 12yty1^2 + 6t^2y1^2 + 4yy1^3 + 4ty1^3 + y1^4 + t^4 - t^4
Suy ra y^4 + t^4 - (t + y1)^4 = 4y^3y1 + 12y^2ty1 + 12yt2y1 + 6y^2y1^2 + 12yty1^2 + 4yy1^3(6)
Khi n =n, thay y1 và t vào phương trình (1) ta có;
Y^n + t^n - (t + y1)^n = G (7) với G là một đa thức gồm tổng các số hạng có hệ số là số nguyên dương và các thừa số y, y1, t.
Giả sử phương trình (1) có nghiệm nguyên dương thì x, y, z, y1, t là các số nguyên dương, khi đó vế phải và vế trái của các phương trình (5), (6) và (7) bằng 0 khi và chỉ khi y, y1, t đồng thời bằng 0 nên x, y, z đồng thời bằng 0 không phải là nghiệm nguyên dương. Do x, y, z, y1, t là các số nguyên dương nên vế phải của các phương trình (5), (6) và (7) lớn hơn không. Suyra :
y^3 + t^3 - (t + y1)^3 > 0 y^3 + t^3 > (t + y1)^3
y^4 + t^4 - (t + y1)^4 > 0 y^4 + t^4 > (t + y1)^4
Y^n + t^n - (t + y1)^n > 0 Y^n + t^n > (t + y1)^n
Ta thấy không có số nguyên dương nào của t để : y^3 + t^3 = (t + y1)^3 , y^4 + t^4 = (t + y1)^4 và y^n + t^n =(t + y1)^n (8) do đó cũng không có số nguyên dương nào của x để y^3 + x^3 = (x + y1)^3, y^4 + x^4 = (x + y1)^4 và y^n + x^n = (x + y1)^n. Mâu thuẫn với giả thiết x, y, x có nghiệm nguyên dương.
Ngược lại giả sử phương trình (8) có nghiệm nguyên dương ta thay giá trị của t = x vào phương trình (1) thì phương trình (1) có nghiệm nguyên dương nhưng t = x trái với điều kiện t < x nên mâu thuẫn.
Vậy phương trình x^n + y^n = z^n không có nghiệm nguyên dương khi n =3, n = 4 và một cách tổng quát không có nghiệm nguyên dương khi n lớn hơn hoặc bằng 3. Trên đây có phải là chứng minh Định lý Fermat lớn hay không.
Chúng ta biết rằng, phương trình x^2+y^2=z^2 có vô số nghiệm là những số nguyên khác 0, ví dụ như x=3, y=4, z= 5. Nếu ta mở rộng ra một chút, thử hỏi phương trình x^n+y^n=z^n với n>2 có thể có nghiệm x, y z là các số nguyên đồng thời khác 0 được không.
Vào thế kỉ 17, nhà toán học Fecma người Pháp đã nghiên cứu vấn đề này. Ông là một luật sư và cũng là một người rất yêu thích toán học. Tuy ông chưa được học toán một cách chính quy nhưng ông lại có lòng say mê sâu sắc và một khả năng phi thường về toán học. Ông có thói quen ghi lại những điều giống như dạng chú thích bên lề các trang sách khi ông đọc chúng. Năm năm sau khi ông qua đời, khi con trai ông sắp xếp lại những bài viết và thư từ của cha mình đã phát hiện ra bút tích của ông trên lề trang sách của quyển sách thứ 2 trong bộ sách "Toán thuật" của Đu Phan Đồ (chắc là một nhà toán học Trung Quốc). Fecma viết: "Không thể mang một số lập phương viết thành tổng của hai số lập phương khác được, hoặc một số có mũ là 4 không thể viết thành tổng của hai số khác có mũ là 4. Hoặc có thể hiểu là với bất kỳ một số nào có số mũ >2 đều không thể là tổng của hai số khác có cùng số mũ như vậy. Tôi đã tìm ra cách chứng minh rất kì diệu". Mọi người nghĩ rằng có lẽ lề giấy quá nhỏ không đủ để Fecma viết phần chứng minh ra đó.
Như vậy, Fecma tuyên bố là x^n+y^n=z^n (n>2) không thể xảy ra với x, y, z nguyên, khác 0. Lúc ấy các nhà khoa học thực sự tin rằng Fecma có thể chứng minh được kết luận này, nên đã gọi lời tiên đoán của ông là "Định lý lớn Fecma".
Các nhà toán học không thỏa mãn với những ghi chép của Fecma, họ đã bắt đầu nỗ lực tìm kiếm nhằm phát hiện ra những điều "chứng minh kì diệu chân chính" của ông. Nhưng hơn 300 năm nay, vấn đề tưởng chừng rất đơn giản đó đã làm đau đầu biết bao nhà toán học kiệt xuất trên thế giới. Nhưng rõ ràng công lao của họ không phải uổng phí. Đầu tiên là vào năm 1770, nhà toán học Ơle đã chứng minh được với n=3 và n=4 thì định lý trên hoàn toàn đúng, rồi lần lượt đến năm 1825, người ta tìm ra n=5, năm 1839 tìm ra n=7 thì định lý Fecma luôn đúng. Cho mãi tới năm 1976, các nhà toán học dùng máy tính điện tử chứng minh được rằng với n < 125 000, định lý Fecma vẫn hoàn toàn đúng. Những thành tựu này xem ra rất cổ vũ chúng ta, nhưng nếu cứ tiếp tục tính tiếp như vậy, con người mãi mãi không có cơ hội để biến định lý Fecma thực sự trở thành một định lý được, bởi phạm vi giá trị của n là vô cùng tận.
Khi thế kỉ 20 sắp kết thúc, vấn đề này đã có bước chuyển biến căn bản: Tháng 5 năm 1995, nhà toán học người Anh Andrew Wiles cuối cùng đã hoàn toàn chứng minh được định lý Fecma, và trước khi bước vào thế kỉ 21, định lý này đã thực sự trở thành một định lý (kết quả được công bố trên tạp chí Annals Of Mathemas , dày hơn 140 trang). Đây là kết quả phát huy tác dụng tổng hợp của rất nhiều phân ngành toán học hiện đại, nó liên quan đến rất nhiều lý luận toán học uyên bác và những cống hiến to lớn của rất nhiều nhà toán học. Do những thành tích kiệt xuất đó mà Andrew Wiles đã giành được vinh dự cao cả trong đại hội các nhà toán học thế giới năm 1998.
Câu chuyện về định lý lớn Fecma đã đặt dấu chấm hết. Nhưng trong quá trình chứng minh định lý này đã nảy sinh rất nhiều tư tưởng và thành quả toán học mới, thúc đẩy nền toán học phát triển mạnh mẽ, làm cho ý nghĩa của định lý Fecma vượt qua cả bản thân định lý.
Niên biểu sơ lược về quá trình chứng minh định lý Fermat cuối cùng (FLT):
- Tháng 5/1993, “crucial breakthrough”, Wiles khoe với phu nhân là đã giải được rồi.
- Sau đó (có lẽ khoảng tháng 6/1993), có một hội nghị tại Cambridge quê ông. Trong bài báo cáo “Ellip Curves and Modular Forms,” Wiles lần đầu tiên công bố là ông đã giải được FLT.
- Tháng 7-8/1993, Nick Katz (đồng nghiệp) trao đổi email với Wiles về những điểm chưa hiểu rõ, trong đó có 1 sai lầm căn bản.
- Tháng 9/1993, Wiles nhận ra chỗ sai và cố gắng sửa. Sinh nhật phu nhân ngày 6/10, bà nói chỉ cần quà sinh nhật là một chứng minh đúng. Wiles cố hết sức nhưng không làm được.
- Tháng 11/1993, ông gởi email công bố là có trục trặc trong phần đó của chứng minh.
- Sau nhiều tháng thất bại, Wiles sắp chịu thua. Trong tuyệt vọng, ông yêu cầu giúp đỡ. Richard Taylor, sinh viên cũ, tới Princeton.
- Ba tháng đầu 1994, ông cùng Taylor tìm mọi cách sửa chữa vấn đề nhưng vô hiệu.
- Tháng 9/1994, trở ngược lại nghiên cứu một vấn đề căn bản mà chứng minh được dựa trên đó
- 19/9/1994 phát hiện cách sửa chữa chỗ trục trặc đơn giản và đẹp dựa trên một cố gắng chứng minh đã làm 3 năm trước. Sau khi coi tới coi lui, ông mừng rỡ nói với phu nhân là đã làm được, thoạt tiên bà không hiểu ông nói về chuyện gì.
- Tháng 5/1995 đăng lời giải trên Annals of Mathemas (Princeton University).
- Tháng 8/1995 hội thảo ở Boston University, giới toán học công nhận chứng minh là đúng.
mình có cách giải khác các bạn có thể tham khảo:
công thức nhận biết: kn<A<(k+1)n thì A ko thể là có dạng dn (A là 1 biểu thức,k,d là số tự nhiên)
nếu x=1,y=1 thì zn=2 thì z=\(\sqrt[n]{2}\left(n>2\right)\)mà \(\sqrt[n]{2}\left(n>2\right)\) là số vô tỉ nên ko tìm được x,y,z nguyên dương nào thỏa mãn (3)
ta có: 2<2n(n>2) suy ra \(\sqrt[n]{2}\left(n>2\right)\)<2 suy ra \(\sqrt[n]{2}-1\)<1 suy ra \((\sqrt[n]{2}-1).y\)<1 suy ra \(\sqrt[n]{2}.y\)<1+y suy ra 2.yn<(y+1)n
nếu: x<y(y>1,x có thể =1):ta có: 2<2n(n>2) suy ra \(\sqrt[n]{2}\left(n>2\right)\)<2 suy ra \(\sqrt[n]{2}-1\)<1 suy ra \((\sqrt[n]{2}-1).y\)<1 suy ra \(\sqrt[n]{2}.y\)<1+y suy ra 2.yn<(y+1)n
ta có: yn<xn+yn<2.yn<(y+1)n (x,y,z nguyên dương)
suy ra yn<xn+yn<(y+1)n suy ra xn+yn ko thề bằng zn (1)
nếu: x>y(x>1,y có thể =1):ta có: 2<2n(n>2) suy ra \(\sqrt[n]{2}\left(n>2\right)\)<2 suy ra \(\sqrt[n]{2}-1\)<1 suy ra \((\sqrt[n]{2}-1).x\)<1 suy ra \(\sqrt[n]{2}.x\)<1+y suy ra 2.xn<(x+1)n
ta có: xn<xn+yn<2.xn<(x+1)n (x,y,z nguyên dương)
suy ra xn<xn+yn<(x+1)n suy ra xn+yn ko thề bằng zn (2)
từ (1),(2),(3) suy ra ko thể tìm được x,y,z nguyên dương nào thỏa mãn
(6-15GP/1 câu) Chứng mịnh định lí Fermat đơn giản, theo hiểu biết của kiến thức Toán học phổ thông:
1. Chứng minh rằng có vô số nghiệm nguyên dương (x,y,z) thỏa mãn \(x^2+y^2=z^2\).
2. Chứng minh rằng có vô số nghiệm nguyên dương (x,y,z) thỏa mãn \(x^2+y^2=z^3\).
3. Chứng minh rằng không có nghiệm nguyên dương (x,y,z) thỏa mãn \(x^3+y^3=z^3\).
4. Nếu ta thay \(z^3\) thành \(z^5\), bài toán số 2 có còn đúng không? Vì sao?
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
Câu 2:
Chọn $x=y=2k^3; z=2k^2$ với $k$ nguyên dương.
Khi này $x^2+y^2 =8k^6 = z^3$.
Tức tồn tại vô hạn $(x;y;z)=(2k^3;2k^3;2k^2) $ với $k$ nguyên dương là nghiệm phương trình.
Câu 2:
Chọn x=y=2k3;z=2k2 với knguyên dương.
Khi này x2+y2=8k6=z3.
Tức tồn tại vô hạn (x;y;z)=(2k3;2k3;2k2) với k nguyên dương là nghiệm phương trình.
Chứng minh Định lý Fermat nhỏ
Xét dãy số :
a,2a,3a,4a,..,(p−1)a
TH1 :
Nếu tồn tại 2 số có cùng số dư khi chia cho p là m.a và n.a ( m < n , m và n là các hằng số )
thì m.a - n.a = ( m - n ) a ⋮ p .
dễ nhận thấy 0 < m - n < p nên a ⋮ p suy ra (a,p) = p ≠ 1 suy ra Vô lý ( Loại )
TH2 :
Khi lấy các số trong dãy trên chia cho p không có số nào có cùng số dư khi chia cho p .
Suy ra các số dư lần lượt là 1,2,3,4,... p-1 vì a không chia hết cho p .
Hay a.2a.3a...(p−1)a≡1.2.3.4...(p−1)(modp)
Hay ap−1.(p−1)!≡(p−1)!(modp)
Hay ap−1≡1(modp)
Tiếc quá nhưng mà bn chép trên mạng rùi!
chứng minh định lý cuối cùng fermat:
Định lý cuối cùng của Fermat - một phương trình có vẻ ngoài đơn giản nhưng không có lời giải trong suốt 350 năm, mãi đến khi nhà toán học người Anh Andew Wiles giải quyết năm 1995. Bây giờ Colin McLarty thuộc đại học Case Western Reserve đã chỉ ra rằng định lý này có thể được chứng minh một cách đơn giản hơn.
Định lý này được gọi là định lý cuối cùng của Fermat hay định lý Lớn Fermat là vì vào năm 1630, Fermat viết vào lề của 1 cuốn sách toán Hy lạp cũ rằng ông đã chứng minh được rằng không có số nguyên nào nghiệm đúng phường trình xn+yn=zn với n lớn hơn 2. Ông cũng viết rằng mình không có đủ không gian trong lề giấy để có thể viết lời giải của mình ra. Việc ông có thực sự chứng minh được định lý đó hay không vẫn còn gây tranh cãi, nhưng vấn đề này đã trở thành một vấn đề nổi tiếng trong toán học. Các nhà toán học hết thế hệ này đến thế hệ khác đã cố sức và đều thất bại trong việc tìm ra lời giải cho định lý này.
Vì thế, khi Wiles tìm ra lời giải năm 1995, McLarty đã nói: “Đó là một cú sốc rất lớn đối với chúng tôi - rằng vấn đề này có thể được giải đáp. Và chúng tôi đã nghĩ bây giờ thì làm gì đây, không còn vấn đề mới nổi tiếng nào nữa rồi”
McLarty là một giáo sư triết học ở Case Western Reserve 1 người chuyên về logic và có bằng đại học về toán. Ông không phát triển một cách nào để chứng minh định lý cuỗi của Fermat nhưng đã chỉ ra rằng định lý này có thể được chứng minh bằng 1 cách đơn giản hơn cách mà Wiles đã làm.
Wiles tin vào cái nhìn sâu sắc của ông trong lý thuyết số và công việc của những người khác- bao gồm cả Alexander Grothendieck- để đưa ra chứng minh dài 110 trang giấy cùng rất nhiều lần sửa đổi.
Grothendieck đã tạo ra một cuộc cách mạng trong lý thuyết số, xây dựng lại đại số hình học vào những năm 60, 70. Ông đã có những giả thuyết táo bạo để hỗ trợ cho những ý tưởng hết sức trừu tượng của mình, bao gồm ý tưởng về sự tồn tại một vũ trụ của nhứng tập vô cùng lớn mà lý thuyết về tập hợp chuẩn không thể chứng minh nó tồn tại. Lý thuyết tập hợp chuẩn được tạo nên bởi những quy luật thông thường hay những định lý mà các nhà toán học vẫn hay sử dụng.
McLarty gọi những công việc mà Grothendieck là "một bộ công cụ" và chỉ ra rằng đó chỉ là một phần nhỏ cần thiết để chứng minh định lý lớn Fermat. McLarty nói:" Phần lớn những nhà lý thuyết giống như những tay đua xe, họ chọn lấy chiếc xe tốt nhất nhưng họ không xây dựng ra chiếc xe của chính họ". McLarty nói "Grothendieck đã tạo ra một bộ công cụ để tạo ra chiếc xe của ông ấy"."Tôi đã sử dụng 1 phần lý thuyết tập hợp mạnh của Grothendieck: một số bậc hữu hạn số học nơi mà tất cả các tập được xây dựng từ những con số chỉ trong một vài bước".
"Ban không cần sử dụng đến những tập hợp của tập hợp của số mà Grothendieck sử dụng trong bộ công cụ của ông ấy hay Wiles dùng để chứng minh định lý Fermat những năm 90". McLarty chỉ ra rằng tất cả ý tưởng của Grothendieck thậm chí là những ý tưởng trừu tượng nhất cũng có thể được sử dụng hợp lý để chỉ dùng một số ít các lý thuyết tập hơp, ít hơn nhiều so với lý thuyết tập hợp chuẩn. Đặc biệt chúng có thể sử dụng hợp lý các bậc số học hữu hạn, nghĩa là các số, tập của các số đó và tập của những tập đó, cứ như vậy nhưng số lượng ít hơn nhiều so với mô hình chuẩn.
"Tôi đánh giá cao sự toàn vẹn của những cơ sở mà Grothedieck đã tạo ra, tôi muốn lấy toàn bộ những điều đó và làm nó hữu dụng hơn trong việc tính toán" McLarty nói. Nhà toán học Harvey Friedman người nổi tiếng vì những thành tựu của mình: Tốt nghiệp ở MIT sau 3 năm, và bắt đầu giảng dạy ở Stanford năm 18 tuổi đã gọi công việc trên là "bước đâu tiên xán lạn". Friedman bây giờ là giáo sư toán danh dự ở Ohio gọi cho Mclarty để mở rộng hướng đi này nếu lý thuyết có thẻ được chứng minh chỉ bằng số học thuần túy không cần phải có tập hợp nào.
"Định lý cuối của Fermat chỉ nói về các số vì thế có lẽ chúng ta có thể chứng minh nó chỉ bằng các số, tôi tin mình sẽ làm được nhưng tôi sẽ cần những cái nhìn sâu sắc mới về số. Nó sẽ rất khó."McLarty nói.
ko tồn tại các nghiệm nguyên khác không x,y và z thỏa mãn : x^n+y^n=z^n trong đó n là một số nguyên lớn hơn 2
k cho mình nha
Ai cho xin link bài tập về định lý fermat nhỏ với
1, Tìm các số nguyên tố p, q thỏa mãn (7p−5p)(7q−5q) chia hết cho pq.
2, Tìm các số nguyên tố p, q thỏa mãn 2p+2q chia hết cho pq.
3, Tìm số nguyên dương n thỏa mãn: Với mọi cặp số nguyên a, b thỏa mãn a2b+1 chia hết cho n ta luôn có a2+b chia hết cho n
4, Cho số nguyên tố lẻ p và các số nguyên dương a, b, n thỏa mãn (a, p)=1 và ap≡bp(mod pn+1) Chứng minh rằng:a≡b(mod pn)
trên mạng không có à???????????????????
Xét dạng bậc ba của phương trình : x\(^n\)\(+\)y\(^n\)= z\(^n\)(với n lớn hơn 2 ).Đây là định lý fermat cuối cùng
Gần đến Giáng sinh rồi nên thầy mình "tặng" cho mình một món quà là bắt mình chứng minh định lý Giáng sinh Fermat-Euler:
"Tất cả các số nguyên tố dạng \(4k+1\) đều có thể biểu diễn được dưới dạng tổng của hai số chính phương." (VD: \(5=1^2+2^2;13=2^2+3^2;17=1^2+4^2;29=2^2+5^2;...\))
Các bạn giúp mình với nhé, mình cảm ơn trước. Nhân tiện thì em chúc các thầy, cô và các bạn có một Giáng sinh vui vẻ nhé.
tìm 2 chữ số tận cùng của 2^2603 theo định lí fermat (nhỏ)