Những câu hỏi liên quan
NL
Xem chi tiết
CL
Xem chi tiết
PK
15 tháng 7 2018 lúc 9:48

\(8x^3+y^3-6xy+1=\left(2x+y\right)^3\)\(-6xy\left(2x+y\right)-6xy+1\)

\(\Leftrightarrow\left(2x+y+1\right)\)\(\left[\left(2x+y\right)^2-\left(2x+y\right)+1-6xy\right]\)

\(\Leftrightarrow\left(2x+y+1\right)\)\(\left(4x^2+y^2-2x-y-2xy+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}2x+y+1=1\\4x^2+y^2-2x-y-2xy+1=1\end{cases}}\)

Xét nốt các trường hợp là xong

Bình luận (0)
OM
13 tháng 7 2019 lúc 12:25

Xét TH2 thế nào vậy bạn. Mình cũng đang cần nhưng không biết làm

Bình luận (0)
SH
Xem chi tiết
NC
16 tháng 3 2018 lúc 21:35

ai giải giúp bạn ý đi ~ cho mình xem với ạ

Bình luận (0)
SH
Xem chi tiết
TB
1 tháng 9 2015 lúc 12:19

bạn đã học đến những hằng đẳng thức đáng nhớ chưa cứ dựa vào đây mà tính ra thôi

Bình luận (0)
DA
Xem chi tiết
NT
28 tháng 12 2020 lúc 0:20

Ta có: \(6xy-8x-3y-2=0\)

\(\Leftrightarrow6xy-3y-8x+4-6=0\)

\(\Leftrightarrow3y\left(2x-1\right)-4\left(2x-1\right)=6\)

\(\Leftrightarrow\left(2x-1\right)\left(3y-4\right)=6\)

\(\Leftrightarrow\left(2x-1\right);\left(3y-4\right)\inƯ\left(6\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(3y-4\right)\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

mà 2x-1 lẻ và \(2x-1\ge-1\) \(\forall x\in N\)

nên \(\left(2x-1\right)\in\left\{-1;1;-3;3\right\}\) và \(\left(3y-4\right)\in\left\{2;-2;6;-6\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}2x-1=-1\\3y-4=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\3y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}2x-1=1\\3y-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\3y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{10}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}2x-1=-3\\3y-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\3y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}2x-1=3\\3y-4=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=4\\3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\left(nhận\right)\end{matrix}\right.\)

Vậy: (x,y)=(2;2)

Bình luận (0)
HH
Xem chi tiết
NM
Xem chi tiết
NT
5 tháng 10 2021 lúc 23:17

a: \(0.5xy\left(8y-8x\right)-6y\left(y-x\right)-4xy^2+6xy\)

\(=4xy^2-4x^2y-6y^2+6xy-4xy^2+6xy\)

\(=-4x^2y+12xy-6y^2\)

Bình luận (0)
HH
Xem chi tiết
H24
Xem chi tiết
LC
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Bình luận (0)
TP
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
CA
20 tháng 2 2021 lúc 17:33

LOADING...

Bình luận (0)
 Khách vãng lai đã xóa