Chương II : Số nguyên

DA
tìm x . y thuộc N sao cho $6xy - 8x - 3y - 2 = 0$
NT
28 tháng 12 2020 lúc 0:20

Ta có: \(6xy-8x-3y-2=0\)

\(\Leftrightarrow6xy-3y-8x+4-6=0\)

\(\Leftrightarrow3y\left(2x-1\right)-4\left(2x-1\right)=6\)

\(\Leftrightarrow\left(2x-1\right)\left(3y-4\right)=6\)

\(\Leftrightarrow\left(2x-1\right);\left(3y-4\right)\inƯ\left(6\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(3y-4\right)\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

mà 2x-1 lẻ và \(2x-1\ge-1\) \(\forall x\in N\)

nên \(\left(2x-1\right)\in\left\{-1;1;-3;3\right\}\) và \(\left(3y-4\right)\in\left\{2;-2;6;-6\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}2x-1=-1\\3y-4=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\3y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}2x-1=1\\3y-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\3y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{10}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}2x-1=-3\\3y-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\3y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}2x-1=3\\3y-4=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=4\\3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\left(nhận\right)\end{matrix}\right.\)

Vậy: (x,y)=(2;2)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
LA
Xem chi tiết
NA
Xem chi tiết
HS
Xem chi tiết
TH
Xem chi tiết
NG
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết