Những câu hỏi liên quan
HL
Xem chi tiết
AO
Xem chi tiết
PP
Xem chi tiết
DT
20 tháng 10 2019 lúc 19:58

a, (n+3)2-(n-1)2

= n2+6n+9-n2+2n-1

= 8n + 8

= 8(n+1) chia hết cho 8

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
ND
20 tháng 10 2019 lúc 20:15

Tiếp câu b nha

\(A=\frac{n^5}{120}+\frac{n^4}{10}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)

\(=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

Ta có:\(n^5+10n^4+35n^3+50n^2+24n\)

\(=n\left(n^4+10x^3+35x^2+50x+24\right)\)

\(=n\left(n^4+2n^3+8n^3+16n^2+19n^2+38n+12n+4\right)\)

\(=n\left(n+3\right)\left(n^3+3n^2+5n^2+15n+4n+12\right)\)

\(=n\left(n+2\right)\left(n+3\right)\left(n+4n+n+4\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3;5;8\)

\(ƯC\left(3;5;8\right)=1\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Vậy A chia hết cho 120

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 10 2019 lúc 19:52

a) \(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)=8\left(n+1\right)⋮8\forall n\in\mathbb{N}\) (đpcm)

b) Thử quy đồng hết lên đi (MSC = 12) rồi phân tích tiếp xem, đang bận ...

Bình luận (0)
 Khách vãng lai đã xóa
ND
20 tháng 10 2019 lúc 20:17

Đm,t quen gọi x rồi nên có một số chỗ gọi là x,mong thông cảm :>>

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
LH
Xem chi tiết
NL
Xem chi tiết
ND
28 tháng 10 2016 lúc 22:18

mai nhé

Bình luận (0)
PV
Xem chi tiết
H24
20 tháng 7 2020 lúc 22:44

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
TT
22 tháng 2 2023 lúc 19:35

cho địt t trả lời

 

Bình luận (0)
H24
Xem chi tiết
PT
Xem chi tiết
TL
10 tháng 3 2020 lúc 16:31

Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)

\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)

Bình luận (0)
 Khách vãng lai đã xóa