Cho hệ phương trình {mx-y=2;x+my=1 Tìm m để hpt có nghiệm duy nhất thoả mãn x+y=1 (giải chị tiết giúp mình với ạ)
Cho hệ phương trình mx+y =2 và -mx+my=m-3
Xác định m để hệ phương trình x;y thuộc Z
Cho hệ phương trình: m x + 2 m y = − 10 1 − m x + y = 10 . Hệ phương trình vô nghiệm khi:
A. m = 0 m = 2
B. m = 0 m = − 2
C. m = 0 m = 1 2
D. m = 0 m = − 1 2
Ta có:
D = m 2 m 1 − m 1 = m − 2 m + 2 m 2 = 2 m 2 − m
D x = − 10 2 m 10 1 = − 10 − 20 m
D y = m − 10 1 − m 10 = 10 m + 10 − 10 m = 10
Nếu D = 0 ⇔ 2 m 2 − m = 0 ⇔ m = 0 m = 1 2
Với m = 0 ⇒ D x ≠ 0 nên hệ vô nghiệm
Với m = 1 2 ⇒ D x ≠ 0 nên hệ vô nghiệm
Vậy với m = 0 m = 1 2 thì hệ phương trình vô nghiệm
Đáp án cần chọn là: C
cho hệ phương trình : -2m+y=5 và mx+3y=1. a) giải hệ phương trình với m = -2 . b) tìm m để hệ phương trình có nghiêm duy nhất ( x;y ) dương
a: Khi m=-2 thì hệ sẽ là:
y+4=5 và -2x+3y=1
=>y=1 và -2x=1-3y=1-3=-2
=>x=1 và y=1
b: \(\left\{{}\begin{matrix}y=2m+5\\mx+3\left(2m+5\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2m+5\\mx=1-6m-15=-6m+14\end{matrix}\right.\)
=>x=-6m+14/m và y=2m+5
Để hệ có nghiệm (x,y)>0 thì -6m+14/m>0 và 2m+5>0
=>m>-5/2 và \(\dfrac{6m-14}{m}< 0\)
=>m>-5/2 và 0<m<7/3
=>0<m<7/3
cho hệ phương trình {x+2y=2 , mx-y=m (m là tham số) a) giải hệ phương trình khi m=2 b) tìm m để hệ phương trình nhận cặp (x,y)=(2,-1) làm nghiệm
a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)
b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm
Cho hệ phương trình y = - 2 - m x + 2 y = m + 4 x + 19 . Tìm m để hệ phương trình trên có nghiệm duy nhất?
A. m = 3
B. m = -3
C. m ≠ -3
D. m ≠ 3
Đáp án C
Nghiệm phương trình y = (-2 - m)x + 2 được biểu diễn bởi đường thẳng (d1): y =(-2 - m)x + 2
Nghiệm phương trình y = (m + 4)x + 19 được biểu diễn bởi đường thẳng (d2): y = (m +4)x +19
Để hệ phương trình đã cho có nghiệm duy nhất khi và chỉ khi hai đường thẳng cắt nhau nên:
-2 - m ≠ m + 4 ⇔ -2m ≠ 6 ⇔ m ≠ -3
Cho hệ phương trình ( x+y = 2 mx−y = m với m là tham số.
a) Giải hệ phương trình khi m = −2.
b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) sao cho 3x−y = −10.
c) Tìm giá trị nguyên của m để hệ phương trình có nghiệm (x; y) mà x, y là những số nguyên
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....
cho hệ phương trình
\(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y+1\end{matrix}\right.\)
a)giải hệ phương trình khi m=2
b)giải hệ phương trình theo m
c)tìm m để hệ có nghiệm (x;y) là các số dương
d)tìm m để hệ phương trình có nghiệm thỏa mãn x^2+y^2=1
Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.
ĐK: $m\neq 0$
a) Khi $m=2,$ hệ phương trình là:
\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)
b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)
c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:
\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)
d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)
Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$
Cho hệ phương trình m x + ( m + 2 ) y = 5 x + m y = 2 m + 3 Giá trị cần tìm của tham số m để hệ phương trình có nghiệm y< 0 là :
Cho hệ phương trình: x + my = m + 1 mx + y = 2m,Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x > 2 và y > 1
\(\left\{{}\begin{matrix}x+y=2\\mx-y=m\end{matrix}\right.\) cho hệ phương trình
a) giải hệ phương trình khi m=-2
b)tìm m để phương trình có nghiệm nguyên
Thay \(m=-2\) vào \(mx-y=m\) \(\Leftrightarrow-2x-y=-2\)
\(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y=-4\\-2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y+2x+y=-4-\left(-2\right)\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-2\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x+2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=0\end{matrix}\right.\)
Vậy tập nghiệm có hệ pt : \(\left(x;y\right)=\left(0;2\right)\)