Tìm số dư khi
a) x43 chia cho x2 +1
b) x77 + x55 + x33 + x 11 + x + 9 cho x2 + 1
Tìm đa thức dư khia chia đa thức x100 - 2x51 + 1 cho x2 - 1
1.Tìm số nguyên x
a,2x-5 chia hết cho x-1
b,3x+4 chia hết cho x-3
c,x-2 là ước của x2+8
2,Tìm x=Z
a,3x+2 chia hết cho x-1
b,x2+2x-7 chia hết cho x+2
3,Tìm cặp số nguyên x,y
a,(x-1).(y+1)=5
b,x.(y+2)= -8
Làm ơn mn giải nhanh giúp mình ngày mai mình phải nộp r!
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
Tìm tất cả các giá trị thực của m để hàm số y = x 3 3 - ( m - 2 ) x 2 + ( 4 m - 8 ) x + m + 1 đạt cực trị tại các điểm x1, x2 sao cho x 1 < - 2 < x 2 .
A. m ⩾ 1 .
B. m > 1 2 .
C. m ⩽ 2 .
D. m < 3 2 .
Tìm tất cả các giá trị thực của m để hàm số y = x 3 3 - ( m - 2 ) x 2 + ( 4 m - 8 ) x + m + 1 đạt cực trị tại các điểm x1, x2 sao cho x 1 < - 2 < - x 2
A. m ≥ 1
B. m > 1 2
C. m ≤ 2
D. m < 3 2
Tìm số tự nhiên nhỏ nhất biết rằng:
a,Khia chia số đó cho 5,6,7,8 được các số dư lần lượt là 1,2,3,4
b,Khia chia số đó cho 3 dư 1,chia cho 5 dư 3 và chia cho 7 dư 5
c/Khi chia cho 3,cho 4,cho 5,cho 7,cho 9 có số dư theo thứ tự là 1,3,1
d/Khia chia cho 5,cho 7,cho 9 có số dư theo thứ tự là 3;4;5
a,Theo đề bài, a : 5,6,7,8 (dư lần lượt 1,2,3,4)
Vậy (a+4) chia hết cho 5,6,7,8 Mà BCNN của 5,6,7,8 là: 23 . 7. 3. 5= 840
a=840-4=836
Đáp số: 836
1/ số nghiệm của phương trình ( x - 1 ) ( x + 7 ) ( x - 5 ) = 0 là
A. 0
B. 1
C. 2
D. 3
2/ số nghiệm của phương trình ( x2 - 1 ) ( x2 + 7 ) ( x2 - 4 ) = 0 là
A. 1
B. 2
C. 3
D. 4
3/ số nghiệm của phương trình ( x3 - 1 ) ( x2 + 9 ) ( x2 + x + 1 ) = 0 LÀ
A. 1
B.2
C.3
D.4
4/ số nghiệm của phương trình ( x3 - 8 ) ( x2 + 9 ) ( x2 - x + 1 ) = 0 là
A. 1
B. 2
C. 3
D. 4
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Tìm dư của phép chia đa thức f(x) cho (x2 +1) (x-2) biết f(x) (chia x-2) dư 7 và f(x) : (x2 +1) dư 3x+5
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?