a,CHỨNG MINH ĐẲNG THỨC
-(-a+b+c)+(b+c-1)=(b-c+6)-(7-a+b)+c
AI NHANH NHẤT MÌNH LIKE CHO NHÉ
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho tỉ lệ thức a/b = c/d
Chứng minh rằng ta có tỉ lệ thức a-b/b = c-d/d
ai nhanh nhất mình tick cho
nhanh lên mình cần gấp
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Do đó ta có:
\(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
\(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) ta có tỉ lệ thức a-b/b = c-d/d
VÌ a/b =c/d nên a/b-1=c/d-1 nên a-b/b=c-d/d
chứng minh các bất đẳng thức sau:
a) 4x^2+4x+5 >0
b) x^2-x+1 >0
c) a^2+ab+b^2 >= 0
:-) giải từng bước một ra giúp mình nhé..
a)
\(4x^2+4x+5>0\)
\(\Leftrightarrow4x^2+4x+4+1>0\)
\(\Leftrightarrow\left(2x+2\right)^2+1>0\) ( luôn đúng)
b)
\(x^2-x+1>0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ( luôn đúng)
c)
a2 + ab + b2
= \(a^2+\dfrac{1}{4}b^2+\dfrac{3}{4}b^2+ab\)
= \(\left(a^2+ab+\dfrac{1}{4}b^2\right)+\dfrac{3}{4}b^2\)
\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2>0\)
Cho ( a +b +c )2 = 3 x ( ab+ac+bc)
chứng minh : a=b=c
Ai nhanh và đúng nhất mình tick cho nhé !
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)\)
Mà \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=3\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+b^2+c^2=ab+ab+bc\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)
Chứng minh rằng ta có tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)nếu có 1 trong các đẳng thức sau(Giả thiết các tỉ lệ thức đều có nghĩa):
a)\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b) (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Câu trả lời hay, đúng và nhanh nhất mik sẽ tick
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
b) Áp dụng kết quả phần a) và tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)(chỗ này mình phá ngoặc luôn nhé)
\(\Rightarrow\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)(đpcm)
Biến đổi vế trái thành vế phải: a(b + c) - b(a - c) = (a + b)c
Chú ý: ''Biến đổi vế trái thành vế phải hoặc vế phải thành vế trái của một đẳng thức'' là một cách chứng minh đẳng thức.
Vế trái = a(b + c) - b(a - c)
= ab + ac - ba + bc
= ac + bc = (a + b)c = vế phải
Cho các số thực dương a,b,c thỏa mãn a+b+c=6. Chứng minh rằng:
\(\dfrac{b+c+5}{1+a}+\dfrac{c+a+4}{2+b}+\dfrac{a+b+3}{3+c}\ge6\). Dấu đẳng thức xảy ra khi nào ?
Đặt A=\(\dfrac{b+c+5}{1+a}+\dfrac{c+a+4}{2+b}+\dfrac{a+b+3}{3+c}\)
Ta có :A+3=\(\left(\dfrac{b+c+5}{1+a}+1\right)+\left(\dfrac{c+a+4}{2+b}+1\right)+\left(\dfrac{a+b+3}{3+a}+1\right)\)
=\(\dfrac{a+b+c+6}{1+a}+\dfrac{a+b+c+6}{2+b}+\dfrac{a+b+c+6}{3+c}\)
=\(\left(a+b+c+6\right)\left(\dfrac{1}{1+a}+\dfrac{1}{2+b}+\dfrac{1}{3+c}\right)\)
=\([\left(a+1\right)+\left(b+2\right)+\left(c+3\right)|\left(\dfrac{1}{a+1}+\dfrac{1}{b+2}+\dfrac{1}{c+3}\right)\)
Áp dụng bất đẳng thức AM-GM dạng \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)( với x,y,z>0)
Ta có :A+3\(\ge9\)\(\Rightarrow A\ge6\)
Dấu "=" xảy ra khi a=3,b=2,c=1
Cho các số dương a,b,c. Chứng minh bất đẳng thức: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Chứng minh các đẳng thức sau với a,b,c thuộc Z
a ) a.(b + c) - b.(a - c)= (a + b).c
b)a.(b - c) - a.(b + d)= -a x (c + d)
a) \(a.\left(b+c\right)-b.\left(a-c\right)=a.b+a.c-b.a+b.c=a.c+b.c=c.\left(a+b\right)\)
b) \(a.\left(b-c\right)-a.\left(b+d\right)=a.b-a.c-a.b-a.d=-a.c-a.d=-a.\left(c+d\right)\)
ĐPCM
a)Xét VT(vế trái)=a.(b+c)-b.(a-c) b)Xét VT=a(b-c)-a(b+d)
=ab+ac-ba+bc. =ab-ac-ab-ad=c.(a+b)=VP(vế phải). =-ac-ad =-a(c+d)=VP