Chương I - Căn bậc hai. Căn bậc ba

NC

Cho các số thực dương a,b,c thỏa mãn a+b+c=6. Chứng minh rằng:

\(\dfrac{b+c+5}{1+a}+\dfrac{c+a+4}{2+b}+\dfrac{a+b+3}{3+c}\ge6\). Dấu đẳng thức xảy ra khi nào ?

BD
13 tháng 8 2017 lúc 15:02

Đặt A=\(\dfrac{b+c+5}{1+a}+\dfrac{c+a+4}{2+b}+\dfrac{a+b+3}{3+c}\)

Ta có :A+3=\(\left(\dfrac{b+c+5}{1+a}+1\right)+\left(\dfrac{c+a+4}{2+b}+1\right)+\left(\dfrac{a+b+3}{3+a}+1\right)\)

=\(\dfrac{a+b+c+6}{1+a}+\dfrac{a+b+c+6}{2+b}+\dfrac{a+b+c+6}{3+c}\)

=\(\left(a+b+c+6\right)\left(\dfrac{1}{1+a}+\dfrac{1}{2+b}+\dfrac{1}{3+c}\right)\)

=\([\left(a+1\right)+\left(b+2\right)+\left(c+3\right)|\left(\dfrac{1}{a+1}+\dfrac{1}{b+2}+\dfrac{1}{c+3}\right)\)

Áp dụng bất đẳng thức AM-GM dạng \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)( với x,y,z>0)

Ta có :A+3\(\ge9\)\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi a=3,b=2,c=1

Bình luận (0)

Các câu hỏi tương tự
L1
Xem chi tiết
LY
Xem chi tiết
NC
Xem chi tiết
NH
Xem chi tiết
NC
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
KA
Xem chi tiết