Những câu hỏi liên quan
NN
Xem chi tiết
NV
21 tháng 9 2021 lúc 7:52

Ta có x=dcba => x=1000d + 100c + 10b +a

                             =1000d + 96c + 8b + (4c + 2b + a)

Mà 1000 chia hết cho 8 =>1000d chia hết cho 8 (1)

      96 chia hết cho 8 => 96c chia hết cho 8 (2)

      8 chia hết cho 8 => 8b chia hết cho 8 (3)

      x=dcba chia hết cho 8 (4)

Từ (1), (2), (3) và (4) =>(4c + 2b + a) chia hết cho 8 (đpcm)

Bình luận (1)
LV
Xem chi tiết
VP
Xem chi tiết
KV
8 tháng 10 2017 lúc 12:01

bài này làm thế nào 

hiền k hộ ta

Bình luận (0)
TM
Xem chi tiết
TT
30 tháng 12 2021 lúc 18:20

con cặc bạn tự làm

 

Bình luận (0)
TT
Xem chi tiết
HV
3 tháng 10 2017 lúc 8:55

1.Nếu như có số tự nhiên k (kEN)sao cho (a +b) = m.k

2.________________________________(a - b)______

3_________________________________(a + b + c) = m.k

Bình luận (0)
LN
Xem chi tiết
H24
27 tháng 8 2017 lúc 15:29

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Bình luận (0)
H24
27 tháng 8 2017 lúc 15:29

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Bình luận (0)
H24
27 tháng 8 2017 lúc 15:30

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Bình luận (0)
TL
Xem chi tiết
DL
8 tháng 5 2021 lúc 20:48

Chỉ có thể đưa ra ví dụ thôi chứ đây đã là kiến thức cơ bản r nhé bn.

Bình luận (1)
 Khách vãng lai đã xóa
IT
12 tháng 10 2021 lúc 20:15

Áp dụng công thức

- Tất cả các số trong 1 tổng đều chia hết cho cùng 1 số thì cả tổng đó sẽ chia hết cho số đó , chỉ cần 1 số ko chia hết thì cả tổng đó cũng sẽ ko chia hết

Bình luận (0)
 Khách vãng lai đã xóa
NT
19 tháng 2 2022 lúc 15:47

Lên anh Google ý

Anh Google bảo : tao sinh ra cho chúng mày ngắm ak

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
H24
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Bình luận (0)