(x+1)^24 + (y-1)^28 = 0
Tìm x,y
Cho x,y >0
Tìm min
a) A= (x+9)(y+9)(1/x + 1/y)
b) B= (1+xy)(1/x + 1/y)
2|x+1|+(y+x)2=0
Tìm x; y.
|x+1|>=0 với mọi x
=>2|x+1|>=0 với mọi x
mà (x+y)^2>=0 với mọi x,y
nên 2|x+1|+(x+y)^2>=0 với mọi x,y
Dấu = xảy ra khi x+1=0 và x+y=0
=>x=-1 và y=1
|x+1|>=0 với mọi x
=>2|x+1|>=0 với mọi x
mà (x+y)^2>=0 với mọi x,y
nên 2|x+1|+(x+y)^2>=0 với mọi x,y
Dấu = xảy ra khi x+1=0 và x+y=0
=>x=-1 và y=1
Tìm x,y thuộc n sao để x^3y-x^2y+4x^2+5xy-y^2=0
tìm số nguyên x,y sao cho x(x^2-y)+y+3)(x^2+1)=0
1 tim cac so nguyen x,y biet x/7=6/21 -5/y=20/28 1/2=x/12 x/8=-28/32 3/y=12/24 3/4=15/y 2 viet 3 phan so bang phan so -10/15
cho x2+2y2+2xy-10x-12y+22=0
tìm Mã Min của P=x+y+1
Đúng thù thì ❤️ giúp mik nha bạn. Thx bạn
Cho x+y= 2015 x,y>0
Tìm GTLN của x.y
\(xy\le\dfrac{1}{4}\left(x+y\right)^2=\dfrac{2015^2}{4}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2015}{2}\)
X+Y=0tìm x, y
x + y = 0
Từ đây suy ra x là số đối của y ( và ngược lại )
Vậy x, y thỏa mãn khi chúng là hai số đối của nhau
vì x+y=0 nên x=0 và y=0. Vậy ta có 0+0=0
tam giác abc có;
C(0;-2)
đường cao AH : x+2y-1=0
trung điểm BN -x+y=0
tìm tọa độ A,B
Đường thẳng BC qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt
Phương trình BC:
\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)
B là giao điểm BN và BC nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}-x+y=0\\2x-y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(2;2\right)\)
Do A thuộc AH nên tọa độ có dạng: \(A\left(-2a+1;a\right)\)
N là trung điểm AC \(\Rightarrow N\left(\dfrac{-2a+1}{2};\dfrac{a-2}{2}\right)\)
N thuộc BN nên: \(-\dfrac{-2a+1}{2}+\dfrac{a-2}{2}=0\)
\(\Leftrightarrow a=1\Rightarrow A\left(-1;1\right)\)
Tìm x,y,z biết
a. 15/x-9=20/y-1=40/z-24 và xy=1200
b. 40/x-30=20/y-15=28/z-24 và xyz=22400