Những câu hỏi liên quan
NT
Xem chi tiết
HH
12 tháng 12 2020 lúc 23:16

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

Bình luận (3)
TP
Xem chi tiết
CV
Xem chi tiết
TH
28 tháng 5 2021 lúc 16:05

Hệ số của x trong khai triển đã cho là: \(1-2+3-4+...+2017-2018=\left(-1\right)+\left(-1\right)+...+\left(-1\right)=-1009\).

 

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 8 2017 lúc 11:58

Hệ số của x5 trong khai triển x(1-2x)5 là (-2)4.C54

Hệ số của x5 trong khai triển x2(1+3x)10 là 33.C103

Do đó hệ số của x5 trong khai triển x(1-2x)5+ x2(1+3x)10 là

 

(-2)4.C54 + 33.C103= 3320

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 2 2019 lúc 7:02

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 4 2018 lúc 17:42

Chọn D

Số hạng tổng quát của khai triển

Số hạng chứa  x 5 trong A(x) 

Số hạng tổng quát của khai triển 

Số hạng chứa  x 5  trong B(x) là 

Vậy hệ số của số hạng chứa  x 5  trong khai triển P(x) đã cho là 240-13608 = -13368.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 8 2017 lúc 5:23

Bình luận (0)
LN
Xem chi tiết
NL
6 tháng 11 2019 lúc 6:44

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

Bình luận (0)
 Khách vãng lai đã xóa
SB
Xem chi tiết