Cho A= 4+42+43+...+435+436
Chứng minh rằng A chia hết cho 3 , 5 và 15
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
cho S=40+41+42+43+.......+435
a)hãy so sanh 3S với6412
b)cho p là số nguyên tố lớn hơn 3
chưng minh (P+1)(P-1) chia hết cho 3
\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)
Với p = 3k + 1
\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)
Với p = 3k + 2
\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)
Từ (1) và (2) => ĐPCM
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
Chứng minh rằng:
a) 10n + 53 chia hết cho 9
b) 4342 - 1717 chia hết cho 10
cho A = 1+4+42+43+44+45+46+47+48 . Chứng minh A chia hết cho 3
Ta có: `A = 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6 + 4^7 + 4^8`
`= (1 + 4 + 4^2) + (4^3 + 4^4 + 4^5) + (4^6 + 4^7 + 4^8)`
`= 21 + 4^3 (1 + 4 + 4^2) + 4^6 (1 + 4 + 4^2)`
`= 21 + 4^3 . 21 + 4^6 . 21`
`= 21 (1 + 4^3 + 4^6)`
Vì \(21\left(1+4^3+4^6\right)⋮3\) nên \(A⋮3\)
Cho A = 4 + 42 + 43 +¼+ 423 + 424 . Chứng minh: A chia hết 20; A chia hết 21; A chia hết 420 .
Cho A = 1 + 4 + 42 + 43 + ... + 459
Chứng tỏ rằng A chia hết cho 7
\(A=\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{57}\right)⋮7\)
cứ tổng của 3 số liên tiếp được 1 số chia hết cho 7
=> (1+4+4^2)+(4^3+4^4+4^5)+.....+(4^57+4^58+4^59)(20 cặp số)
=> 21+ 4^3(1+4+4^2)+...+4^57(1+4+4^2)
......
Vì 21 chia hết cho 7=> 21.(........) chia hết cho 7=> A chia hết cho 7
đpcm
(1+4+42)+(42+43+44)+...+(457+458+459)
=21.(1+43+457) chi hết cho 7
=> A chia hết cho 7(do 21 chia hết cho 7)
Chứng minh rằng:
a) 7^6+7^5-7^4 chia hết cho 55 ;
b) 16^5+2^15 chia hết cho 33;
c) 6^300+6^299+6^298 chia hết cho 43;
d)5^2001+5^2000+5^1999 chia hết cho 155
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
ggghghghghghgghghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhfffffgggggggggggggggggggggggggggggggggggggggggggggggggggggggggdddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddbbbgjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbblllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooonnnnn | |
1/Tìm chữ số tận cùng của những số sau:
A. 17!
B. 2.4.6.98+1.3.5.....97
2/
A. Chứng minh rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3 còn tổng của 4 số tự nhiên liên tiếp không chia hết cho 4.
B. Chứng minh rằng tích của 4 số tự nhiên liên tiếp chia hết cho 12.
C. Chứng minh rằng tích của 5 số tự nhiên liên tiếp chia hết cho 12.
D. Chứng minh rằng 95^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
E. Chứng minh rằng 43^43 - 17 chia hết cho 5
2: a) Chứng tỏ rằng 37 là ước của số có dạng aaabbb
b) Tìm số tự nhiên a, biết rằng 332 chia cho a thì dư 17, còn khi chia cho 555 cho a thì được số dư là 15.
c) Cho A = 1 + 4 + 42 + 43 + ... + 411 . Chứng minh rằng A chia hết cho 21
d) Chứng tỏ rằng: 1033 + 8 chia hết cho 18.
Bài 3: Cần dùng tất cả bao nhiêu chữ số để đánh số trang của quyển sách dày 199 trang? (bắt đầu từ trang số 1)
2. b)
Vì 332 chia a dư 17 nên ( 332-17) \(⋮\)a => 315\(⋮\)a
Vì 555 chia a dư 15 nên ( 555-15)\(⋮\)a =>540\(⋮\)a
Vì 315\(⋮\)a mà 540\(⋮\)a nên a \(\in\)ƯCLN( 315;540)
315= 32.5.7
540= 22..33.5
ƯCLN(315;540) =5.32= 45
Vậy...
Ko chắc
2
a) ta có : aaa . bbb
=a . 111 . b . 111
=a . 37.3 .b .111
=> a.37.3.b.111 chia hết cho 37 hay aaa.bbb chia hết cho 37
mình nghĩ thế , ko chắc đúng đâu nhé