Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
CT
2 tháng 7 2019 lúc 2:33

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

c) Hình bình hành EFGH là hình thoi ⇔ HE = EF

⇔ Hình thoi ABCD có 1 góc vuông

⇔ ABCD là hình vuông.

 

Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.

Bình luận (0)
H24
Xem chi tiết
HM
8 tháng 9 2023 lúc 22:03

Xét \(\Delta HAE\) và \(\Delta FBE\) ta có:

\(AH = BF\) (gt)

\(\widehat {{\rm{HAE}}} = \widehat {{\rm{FBE}}} = 90^\circ \) (gt)

\(AE = BE\) (gt)

Suy ra \(\Delta HAE = \Delta FBE\) (c-g-c)

Suy ra \(HE = EF\)

Chứng minh tương tự ta có: \(EF = GF\); \(GF = GH\); \(GH = HE\)

Suy ra \(HE = EF = FG = GH\)

Suy ra \(EFGH\) là hình thoi

Bình luận (0)
HH
Xem chi tiết
LG
31 tháng 12 2018 lúc 15:16

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

Bình luận (0)
NT
Xem chi tiết
LG
31 tháng 12 2018 lúc 15:16

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

Bình luận (0)
TT
Xem chi tiết
LP
Xem chi tiết
TM
Xem chi tiết

Bài 1
Áp dụng tính chất đường trung bình vào
*\large\Delta ABD có: AE=EB, BH=HD  EH //AD, EH=\frac{AD}{2}
*\large\Delta ACD có: AF=CF, DG=GC  GF //AD, GF=\frac{AD}{2}
*\large\Delta ABC có: AE=EB, BF=CF  EF //AD, EF=\frac{BC}{2}
*\large\Delta BCD có: BH=HD, DG=GC  HG //AD, GH=\frac{BC}{2}
Tứ giác EFGH có: EH//GF//AD, EH=GF=\frac{AD}{2}
 EFGH là hbh
a)Để EFGH là hcn  EH \perp \ EF, EF \perp \ FG, FG \perp \ GH
mà EH//AD, EF//BC, FG//AD , GH//BC
 AB \perp \  BC
 \widehat{ADC}+\widehat{BCD}=90^o
__________________

mình lớp 5 mong bạn thông cảm

Bình luận (0)
VV
Xem chi tiết
GM
Xem chi tiết
NT
20 tháng 8 2023 lúc 10:59

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình

=>EH//BD và EH=BD/2

Xét ΔBCD có

G,F lần lượt là trung điểm của CD,CB

=>GF là đường trung bình

=>GF//BD và GF=BD/2

=>EH//GF và EH=GF

=>EFGH là hình bình hành

Bình luận (1)