Những câu hỏi liên quan
ND
Xem chi tiết
GD

Biểu thức nào em?

Bình luận (1)
H24
Xem chi tiết
ND
Xem chi tiết
NT
23 tháng 7 2022 lúc 20:20

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26

Bình luận (0)
AT
Xem chi tiết
AH
22 tháng 12 2021 lúc 9:32

Bạn coi lại xem có viết nhầm chỗ nào trong biểu thức không? Biểu thức này nội việc rút gọn thôi đã "xấu" rồi.

Bình luận (0)
CT
Xem chi tiết
NT
1 tháng 7 2023 lúc 13:32

a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2

b: =x^3+3x^2-2x-3x^2-9x+6

=x^3-11x+6

c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)

\(=2x^2-3x-1+\dfrac{5}{2x+1}\)

Bình luận (0)
H9
1 tháng 7 2023 lúc 13:50

a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)

\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)

\(=2x^5-16x^3-2x^5-x^3\)

\(=-17x^3\)

b) \(\left(x+3\right)\left(x^2+3x-2\right)\)

\(=x^3+3x^2-2x+3x^2+9x-6\)

\(=x^3+6x^2+7x-6\)

c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)

\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)

\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)

Bình luận (0)
ND
Xem chi tiết
NT
20 tháng 8 2023 lúc 20:36

a: \(A=\dfrac{-\left(x+2\right)^2-2x\left(x-2\right)-4x^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)

\(=\dfrac{-x^2-4x-4-2x^2+4x-4x^2}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}\)

\(=\dfrac{-7x^2-4}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}=\dfrac{7x^2+4}{\left(x+2\right)\left(x-3\right)}\)

b: Khi x=1/3 thì \(A=\dfrac{7\cdot\dfrac{1}{9}+4}{\left(\dfrac{1}{3}-2\right)\left(\dfrac{1}{3}-3\right)}=\dfrac{43}{40}\)

Bình luận (0)
DV
Xem chi tiết
NT
25 tháng 1 2021 lúc 22:42

ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)

a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)

\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)

\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)

\(=\dfrac{3x}{x-2}\)

b) Để A nguyên thì \(3x⋮x-2\)

\(\Leftrightarrow3x-6+6⋮x-2\)

mà \(3x-6⋮x-2\)

nên \(6⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(6\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{3;1;4;0;5;8;-4\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)

Bình luận (0)
TT
Xem chi tiết
NA
Xem chi tiết
AH
23 tháng 9 2017 lúc 9:43

Lời giải:

Chắc bạn nhầm giữa GTLN và GTNN. Ba biểu thức này chỉ tìm đc min thôi nhé.

Biểu thức 1:

\(A=4x^2+4x+2016=(2x+1)^2+2015\)

Nhận thấy với \(x\in\mathbb{R}\Rightarrow (2x+1)^2\geq 0\Rightarrow (2x+1)^2+2015\geq 2015\)

Do đó \(A_{\min}=2015\Leftrightarrow x=-\frac{1}{2}\)

Biểu thức 2:

\(B=\frac{-7}{x^2+6x+2012}\)

Ta có \(x^2+6x+2012=(x+3)^2+2003\)

Thấy rằng \((x+3)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+3)^2+2003\geq 2003\)

\(\Rightarrow \frac{1}{x^2+6x+2012}\leq \frac{1}{2003}\Rightarrow \frac{-7}{x^2+6x+2012}\geq \frac{-7}{2003}\)

\(\Rightarrow B_{\min}=\frac{-7}{2003}\Leftrightarrow x=-3\)

Biểu thức 3:

\(C=(x-1)(x+3)(x+2)(x+6)\)

\(\Leftrightarrow C=[(x-1)(x+6)][(x+2)(x+3)]\)

\(\Leftrightarrow C=(x^2+5x-6)(x^2+5x+6)\)

Đặt \(x^2+5x-6=t\Rightarrow C=t(t+12)=(t+6)^2-36\geq 0-36\)

\(\Leftrightarrow C\geq -36\)

Vậy \(C_{\min}=-36\Leftrightarrow t=-6\Leftrightarrow x^2+5x-6=-6\Leftrightarrow x=0\) hoặc \(x=-5\)

Bình luận (0)