Những câu hỏi liên quan
NN
Xem chi tiết
NT
28 tháng 8 2019 lúc 21:15

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Bình luận (0)
TF
28 tháng 8 2019 lúc 21:15

đây là tiếng việt à chị ?????

Bình luận (0)
NN
28 tháng 8 2019 lúc 21:18

nguyễn tuấn thảo ơi, mình chỉ muốn hỏi để kb rồi học cùng nhau thôi chứ nội quy của OLM mình biết mà

Bình luận (0)
HN
Xem chi tiết
AH
16 tháng 9 2023 lúc 21:54

Bạn đăng hẳn đề lên mọi người xem và hỗ trợ nhanh hơn nhé.

Bình luận (0)
LT
16 tháng 9 2023 lúc 22:03

sách gì bn phải ghi rõ nha với lại đề nx

Bình luận (0)
NN
Xem chi tiết
LS
6 tháng 12 2021 lúc 16:55

Ví dụ 1: 1 que kem – 5000 đồng

            3 que kem – 15000 đồng

Phương pháp làm:

Rút về đơn vị.Sử dụng tỉ số.

Ví dụ 2: Cách 1. Rút về đơn vị

Tóm tắt

5 giờ - 135 km

7 giờ - ? km

Bài giải

Số kilomet ô tô đi được trong 1 giờ là: 135 : 5 = 27 (km)

Số kilomet ô tô đi được trong 7 giờ là: 27 x 7 = 189 (km)

                                                            Đáp số 189 km.

Cách 2. Sử dụng tỉ số

Số giờ và số km là hai đại lượng tỉ lệ thuận nên số km đi được trong 7 giờ là;

Dạng toán quan hệ tỉ lệ lớp 5 hay nhất

 Đáp số: 189 km

Hai đại lượng tỉ lệ nghịch

A và B là hai đại lượng tỉ lệ nghịch khi A tăng bao nhiêu lần thì B giảm bấy nhiêu lần.

Cách 1. Rút về đơn vị

Tóm tắt

10 người – 7 ngày

? người – 5 ngày

Bài giải

1 người làm xong công việc trong: 7 x 10 = 70 (ngày)

Số người cần làm xong công việc trong 5 ngày là: 70 : 5 = 14 (người)

                                                            Đáp số 14 người

Bình luận (0)
LS
6 tháng 12 2021 lúc 16:55

đây nha

Bình luận (12)
LS
6 tháng 12 2021 lúc 17:05

* Cách 1:

1 em trồng được số cây là:

90 : 15 = 6 (cây)

45 em trông được số cây là:

6 x 45 = 270 (cây)

Đáp số: 270 cây

* Cách 2:

Số em tỉ lệ thuận với số cây trồng được nên có tỉ số: a90; 4515

45 em trồng được số cây là:

90 × 4515 = 270 (cây)

Đáp số: 270 cây

Ví dụ 2: Một đơn vị thanh niên xung phong chuẩn bị một số gạo đủ cho đơn vị ăn trong 30 ngày. Sau 10 ngày đơn vị nhận thêm 10 người nữa. Hỏi số gạo còn lại đơn vị sẽ đủ ăn trong bao nhiêu ngày, biết lúc đầu đơn vị có 90 người?

Bài giải:

Tóm tắt:

90 người – 30 ngày

Sau 10 ngày:

Dự định: 90 người – 20 ngày

Thực tế: 90 + 10 người – a? ngày

Cách 1:

Sau 10 ngày số gạo còn lại dự đinh ăn đủ trong số ngày là:

30 – 10 = 20 (ngày)

1 người theo dự định ăn hết số gạo trong số ngày là:

90 x 20 = 1800 (ngày)

Thực tế số người ăn số gạo còn lại là:

90 + 10 = 100 (người)

Thực tế số gạo còn lại ăn trong số ngày là:

1800 : 100 = 18 (ngày)

Đáp số: 18 ngày

Cách 2:

Số người ăn và số ngày ăn hết là 2 đại lượng tỉ lệ nghịch nên có tỉ số: a20; 10090

Số gạo còn lại ăn đủ trong số ngày là:

20:10090=18 (ngày)

Đáp số: 18 ngày

(Bài này chú ý phần tóm tắt cần chính xác)

Ví dụ 3: Một đội công nhân có 8 người trong 6 ngày đắp được 360m đường. Hỏi một đội công nhân có 12 người đắp xong 1080m đường trong bao nhiêu ngày? (Năng suất làm việc mỗi người như nhau)?

Bài giải:

Tóm tắt:

8 người – 6 ngày – 360m đường

12 người - a ? ngày – 1080 m đường

Cách 1: phải tính 1 người – 1 ngày đắp được ? m đường

8 người 1 ngày đắp được số mét đường là:

360 : 6 = 60 (m)

1 người 1 ngày đắp được số mét đường là:

60 : 8 = 152 (m)

1 người đắp 1080m đường trong số ngày là:

1080 : 152 = 144 (ngày)

12 người đắp 1080 m đường trong số ngày là:

144 : 12 = 12 (ngày)

Cách 2:

Số ngày xong tỉ lệ nghịch với số người

Số ngày xong tỉ lệ thuận với số m đường

Các tỉ số: a6; 128;1080360

12 người đắp 1080 m đường trong số ngày là:

6:128 × 1080360 = 12 (ngày)

Đáp số: 12 ngày

Bình luận (1)
LD
Xem chi tiết
CX
29 tháng 2 2020 lúc 20:54

Bài 1: Tìm n∈Nn∈N sao cho 2n−1⋮72n−1⋮7
Giải:
Nếu n=3k(k∈N)n=3k(k∈N) thì 2n−1=23k−1=8k−1⋮72n−1=23k−1=8k−1⋮7
Nếu n=3k+1(k∈N)n=3k+1(k∈N) thì 2n−1=23k+1−1=2(23k−1)+1=7m+12n−1=23k+1−1=2(23k−1)+1=7m+1
Nếu n=3k+2(k∈N)n=3k+2(k∈N) thì 2n−1=23k+2−1=4(23k−1)+3=7m+32n−1=23k+2−1=4(23k−1)+3=7m+3
Vậy: 2n−1⋮72n−1⋮7khi n = BS 3
Bài 2: Tìm n ∈ N để:
a)3n−1⋮8a)3n−1⋮8
b)A=32n+3+24n+1⋮25b)A=32n+3+24n+1⋮25
c)5n−2n⋮9c)5n−2n⋮9

Giải:

a) Khi n = 2k (k ∈ N) thì 3n – 1 = 32k – 1 = 9k – 1 chia hết cho 9 – 1 = 8
Khi n = 2k + 1 (k ∈ N) thì 3n – 1 = 32k + 1  – 1 = 3. (9k – 1 ) + 2 = BS 8 + 2
Vậy : 3n – 1 chia hết cho 8 khi n = 2k (k ∈ N)
b) A = 32n + 3 + 24n + 1 = 27 . 32n + 2.24n =  (25 + 2) 32n  + 2.24n = 25. 32n  + 2.32n  + 2.24n
= BS 25 + 2(9n  + 16n)
Nếu n = 2k +1(k ∈ N) thì 9n  + 16n = 92k + 1 + 162k + 1 chia hết cho 9 + 16 = 25
Nếu n = 2k  (k ∈ N) thì 9n có chữ số tận cùng bằng 1 , còn 16n có chữ số tận cùng bằng 6
suy ra 2((9n  + 16n) có chữ số tận cùng bằng 4 nên A không chia hết cho 5 nên không chia hết cho 25
c) Nếu n = 3k (k ∈ N) thì 5n – 2n = 53k – 23k chia hết cho 53 – 23 = 117 nên chia hết cho 9
Nếu n = 3k + 1 thì 5n – 2n =  5.53k – 2.23k = 5(53k – 23k) + 3. 23k = BS 9 + 3. 8k
= BS 9 + 3(BS 9 – 1)k = BS 9 + BS 9 + 3
Tương tự:  nếu n = 3k + 2 thì 5n – 2n không chia hết cho 9

Dạng 2: Tìm điều kiện chia hết

Ví dụ 1Tìm số nguyên n để giá trị của biểu thức A chia hết cho giá trị của biểu thức B:
A=n3+2n2−3n+2,B=n2−nA=n3+2n2−3n+2,B=n2−n
Giải: Đặt tính chia:

Muốn chia hết, ta phải có 2 chia hết cho n(n-1),do đó 2 chia hết cho n(vì n là số nguyên)
Ta có:

n

1

-1

2

-2

n-1

0

-2

1

-3

n(n-1)

0

2

2

6

 

loại

  

loại

Vậy n= -1; n = 2
Ví dụ 2:
Tìm số nguyên dương n để n5+1⋮n3+1.n5+1⋮n3+1.
Giải: Ta có
n5+1⋮n3+1⇔n2(n3+1)−(n2−1)⋮(n+1)(n2−n+1)⇔(n−1)(n+1)⋮(n+1)(n2−n+1)⇔n−1⋮n2−n+1(n+1≠0)n5+1⋮n3+1⇔n2(n3+1)−(n2−1)⋮(n+1)(n2−n+1)⇔(n−1)(n+1)⋮(n+1)(n2−n+1)⇔n−1⋮n2−n+1(n+1≠0)

Nếu n =1 thì ta được 0 chia hết cho 1
Nếu n>1 thì n−1<n(n−1)+1=n2−n+1n−1<n(n−1)+1=n2−n+1, do đó không thể chia hết cho n2−n+1.n2−n+1.

Vậy giá trị duy nhất của n tìm được là 1.
Ví dụ 3:
Tìm số nguyên n để n5+1⋮n3+1.n5+1⋮n3+1.
Giải: Theo ví dụ trên ta có:
n−1⋮n2−n+1⇒n(n−1)⋮n2−n+1⇒n2−n⋮n2−n+1⇒(n2−n+1)−1⋮n2−n+1⇒1⋮n2−n+1n−1⋮n2−n+1⇒n(n−1)⋮n2−n+1⇒n2−n⋮n2−n+1⇒(n2−n+1)−1⋮n2−n+1⇒1⋮n2−n+1
Có hai trường hợp
n2−n+1=1⇔n(n−1)=0⇔n=0;n=1.n2−n+1=1⇔n(n−1)=0⇔n=0;n=1. Các giá trị này thoả mãn đề bài.
n2−n+1=−1⇔n2−n+2=0n2−n+1=−1⇔n2−n+2=0   Không tìm được giá trị của n
Vậy n= 0; n =1 là hai số phải tìm.
Ví dụ 4:
Tìm số tự nhiên n sao cho 2n−1⋮7.2n−1⋮7.
Giải:
Nếu n = 3k (k ∈ N) thì 2n -1 = 23k -1 = 8k -1
Chia hết cho 7
Nếu n =3k +1(k ∈ N) thì
2n -1= 23k+1 – 1=2(23k -1) +1 = Bs 7 +1
Nếu n = 3k +2 ( k ∈ N) thì
2n -1= 23k+2 -1 =4(23k – 1)+3 =Bs 7 +3
Vậy 2n -1 chia hết cho 7 n = 3k(k ∈ N).

*Bài tập áp dụng

Bài 1: Tìm điều kiện của số tự nhiên a để a2+3a+2⋮6a2+3a+2⋮6
Giải:
Ta có a2+3a+2=(a+1)(a+2)a2+3a+2=(a+1)(a+2) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2
Do đó a2+3a+2⋮3⇔a2+2⋮3⇔a2=3k+1⇔a⋮̸3.a2+3a+2⋮3⇔a2+2⋮3⇔a2=3k+1⇔a⋮̸3.

Điều kiện phải tìm là a không chia hết cho 3.
Bài 2:
Tìm điều kiện của số tự nhiên a để a4−1⋮240.a4−1⋮240.

Bài 3:
Tìm số nguyên tố p để 4p +1 là số chính phương.
Bài 4.
Tìm ba số nguyên tố liên tiếp a,b,c sao cho a2+b2+c2a2+b2+c2  cũng là số nguyên tố
Giải: Xét hai trường hợp
+ Trong 3 số a,b,c có một số bằng 3.
Khi đó 22+32+52=3822+32+52=38 là hợp số (loại)
Còn 32+52+72=8332+52+72=83 là số nguyên tố.
+ Cả 3 số a,b,c đều lớn hơn 3.
Khi đó a2,b2,c2a2,b2,c2 đều chia cho 3 dư 1 nên
a2+b2+c2a2+b2+c2 chia hết cho 3,là hợp số (loại)
Vây ba số phải tìm là 3,5,7.
* Các bài tập tổng hợp các dạng toán trên
Bài 1. Cho các số nguyên a,b,c đều chia hết cho 6. Chứng minh rằng
Nếu a+ b+ c chia hết cho 6 thì a3+b3+c3⋮6a3+b3+c3⋮6

Bài 2: Chứng minh rằng tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.
Bài 3: Chứng minh rằng A chia hết cho B với
A=13+23+33+…+993+1003B=1+2+3+…+99+100.A=13+23+33+…+993+1003B=1+2+3+…+99+100.

Bài 4. Chứng minh rằng nếu các số tự nhiên a,b,c thoả mãn điều kiện
a2+b2=c2a2+b2=c2 thì abc chia hết cho 60.

Dạng 3: Tìm số dư

Ví dụ 1: Tìm số dư khi chia 21002100
a) cho 9;            b) cho 25;           c) cho 125.
Giải:
a) Lũy thừa của 2 sát với một bội số của 9 là 23 = 8 = 9-1
Ta có 2100 =2( 23)33 = 2(9-1)33=2(B(9-1))
= B( 9) -2= B(9)+ 7
Số dư khi chia 2100 cho 9 là 7.
b) Lũy thừa của 2 sát với bội số của 25 là
210 = 1024 =B(25) -1
Ta có  2100= (210)10 =(B(25) -1)10 =B(25) +1
Số dư khi chia 2100 cho 25 là 1.
c) Dùng công thức Niu-tơn:
2100 = (5 – 1)50 =550-50.5049+….+-50.5+1.
Không kể phần hệ số của khai triển Niu-tơn thì 48 số hạng đầu đã chứa lũy thừa của 5 với sô mũ lớn hơn hoặc bằng 3 nên chia hết  cho 125, số hạng cuối là 1 .
Vậy 2100 chia cho 125 dư 1.

Ví dụ 2: Tìm ba chữ số tận cùng của 2100 khi viết trong hệ thập phân.
Giải: Theo ví dụ trên ta có
2100 = BS 125 +1,mà 2100 là số chẵn, nên ba chữ số tận cùng của nó chỉ có thể là 126, 376, 626 hoặc 876.
Mà 2100 chia hết cho8 nên ba chữ số tận cùng của nó phải chia hết cho 8.Trong 4 số trên chỉ có 376 thoả mãn điều kiện này.
Vậy ba chữ số tận cùng của 2100 là 376.
Chú ý: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của n100 là 376.
Ví dụ 3: Tìm 4 chữ số tận cùng của 51994 viết trong hệ thập phân.
Giải: 
Cách 1. Ta thấy số tận cùng bằng 0625 nâng lên luỹ thừa nguyên dương bất kì vẫn tận cùng bằng 0625.Do đó
51994=54k+2 =25(54k)=25(0625)k
= 25.(…0625)  = …..5625
Cách 2. Ta thấy 54k -1 chia hêt cho 54 -1
= (52 -1)(5+1) nên chia hết cho 16.
Ta có: 51994 = 56( 5332 -1) +56
Do 56 chia hết cho 54, còn 5332 -1 chia hết cho 16 nên 56( 5332 -1) chia hết cho 10000
Và 56 = 15625.
Vậy 4 chữ số tận cùng của 51994 là 5
Bài tập tương tự
1.CMR với mọi số tự nhiên n thì 7n và 7n+4 có hai chữ số tận cùng như nhau.
+ Cho hs đặt câu hỏi: Khi nào hai số có hai chữ số tận cùng giống nhau?
– Khi hiệu của chúng chia hết cho 100
  Giải: Xét hiệu của 7n +4– 7n = 7n( 74 -1)
= 7n .2400
Do đó 7n+1 và 7n có chữ số tận cùng giống nhau.
2.Tìm số dư của 2222+5555 cho 7.
+ Xét số dư của 22 và 55 cho 7?
Giải: Ta có  2222 + 5555 =(B(7) +1)22 +(B(7) -1)55
                                                               = B(7) +1+ B(7) -1
= B(7)
Vậy2222 + 5555 chia hết cho 7



 

Bình luận (0)
 Khách vãng lai đã xóa
LD
29 tháng 2 2020 lúc 21:12

Thanks bạn nhều

Bình luận (0)
 Khách vãng lai đã xóa
MH
Xem chi tiết
NK
15 tháng 12 2016 lúc 17:45

hỏi là : số bóng cần mua để đủ lap cho các lớp là bao nhiêu ?

Bình luận (0)
NK
15 tháng 12 2016 lúc 17:48

giải là : số bóng là : 32*8=256( bóng )

Bình luận (0)
NH
Xem chi tiết
TC
Xem chi tiết
PA
11 tháng 5 2017 lúc 8:36

BÀI GIẢI

Bình có số quyển vở là:

26 + 6 = 32 (quyển)

Nam có số quyển vở là

32 - 9 = 23 (quyển )

trung bình mỗi bạn có số quyển vở là

(23 + 32 + 26) : 3 = 27 (quyển)

Đáp số: 27 quyển

NHỚ K MÌNH ĐẤY

Bình luận (0)
H24
11 tháng 5 2017 lúc 8:30

Bình có:

26 + 6 = 32 quyển

Nam có:

32 - 9 = = 23 quyển

Trung bình mỗi bạn có:

(23 + 32 + 26) : 3 =27 quyển

Đs: 27 quyển vở

Bình luận (0)
DM
11 tháng 5 2017 lúc 8:36

Bình có số quyển vở là: 26+6=32 (quyen vo)

Nam có số quyển vở là: 32 - 9=23 (quyen vo)

Trung bình mỗi bạn có số quyển vở là: (26+32+23)/3=27 ( quyen)

Bình luận (0)
LH
Xem chi tiết
NL
18 tháng 8 2021 lúc 22:20

1.

Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN

\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ

Hàm có 4 tiệm cận

Bình luận (0)
NL
18 tháng 8 2021 lúc 22:27

2.

Căn thức của hàm luôn xác định

Ta có:

\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn

\(\Rightarrow x=2\) ko phải TCĐ

\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)

\(\Rightarrow x=3\) là tiệm cận đứng duy nhất

Bình luận (0)
QH
Xem chi tiết