cho ba so a b c thoa man 25a+b+2c=0. Dat f(x)=\(ax^2+bx+c\)chung minh f(-3).f(4)<o
Cho đa thức f (x) = ax2 + bx + c thỏa mãn 25a + b + 2c = 0. Chứng minh f (-3) × f (-4) lớn hơn hoặc bằng 0
Cho đa thức \(F\left(x\right)=ax^2+bx+c\) (a,b,c là các hằng số ).Chứng minh rằng nếu 25a + 7b +2c=0 thì f (3), F(4) bé hơn hoặc bằng 0
Cho đa thức
\(f\left(x\right)=ax^2+bx+c\)
(a,b,c là hằng số).
Chứng minh rằng nếu 25a+7b+2c=0 thì f(3).f(4)<=0
a. Xac dinh a de nghiem cua da thuc f(x) = 2x-4 cung la nghiem cua da thuc g(x) = x^2 - ax +2b.
b. Cho f(x) = ax^3 + bx^2 + cx + d, trong do a; b; c; d la hang so va thoa man : b = 3a + c
Chung to rang : f(1) = f(-2)
Cho đa thức f(x)=ax^2+bx+c cmr: nếu 25a-7b+2c=0 thì f(3)*f(4) bé hơn hoặc bằng 0.
cho f(x)= ax^2+bx+c voi a,b,c la cac so huu ti
chung to rang f(-2).f(3) be hon bang 0 . biet rang 13a+b+2c=0
Cho ba số a b c thỏa mãn 25a+b+2c=0. Đặt f(x) a*x2+b*x+c. Chứng minh f(-3). f(4)<,= 0
cho ham so \(y=f\left(x\right)=ax^2+bx+c\)(a;b;c thuoc Q)
chung to rang f(-2)*f(3) nho hon hoac bang 0, biet rang 13a+b+2c=0
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)(vì 13a+b+2c=0)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(-2\right)\right]^2\le0\)( đpcm)
Cho đa thức f(x)=ax^2+bx+c với a,b,c thuộc R biết 13a+b +2c=0 . Chứng minh f(-2). f(3)<0
Bạn ơi đề sai đấy đáng ra bắt c/m f(-2).f(3)\(\le0\)nha bạn
ta có f(x)=ax2+bx+c
\(\hept{\begin{cases}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{cases}}\)
Xét tổng f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)
=4a-2b+c+9a+3b+c
=13a+b+2c
Lại có 13a+b+2c=0 (giả thiết)
=> f(-2)+f(3)=0
=> f(-2)=-f(3)
=> f(-2).f(3)=f(-2).[-f(-2)]
=-[f(-2)2 ]
Do [f(-2)2 ] \(\ge0\)=> -[f(-2)2 ]\(\le0\)
=> f(-2).f(3)\(\le0\)(đpcm)
Ta có:
f(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c
f(3) = a.32 + b.3 + c = 9a + 3b + c
Suy ra: f(-2) + f(3) = 13a + b + 2c. Do đó f(-2).f(3) < 0 (đpcm)