tìm giá trị nhỏ nhất của biểu thức
A= \(x^2 + y^2 - 6x + 12xy - 4y +12\)
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức sau
8) H = x⁶ – 2x³ + x² – 2x + 2
9)M =2x² + 9y² – 6xy – 6x – 12y + 2028
10) N = x² – 4xy + 5y² + 10x – 22y + 28
H=\(x^6-2x^3+x^2-2x+2\)
\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)
\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)
Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)
⇒ MinH=0 ⇔ \(x=1\)
Tìm giá trị nhỏ nhất của biểu thức: \(A=x^2+2y^2+2xy+2x-4y+2028\)
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-6x+y^2+2027\)
\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)
=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức:
A= 2\(x^2\) -6x -\(\sqrt7\)
B=\(x^2 + y^2 - 6x + 12xy - 4y + 12\)
\(A=2x^2-6x-\sqrt{7}\)
\(=2\left(x^2-3x-\sqrt{\frac{7}{2}}\right)\)
\(=2\left(x^2-3x+\frac{9}{4}-\frac{9+2\sqrt{7}}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{4}\right]\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\ge-\frac{9+2\sqrt{7}}{2}\)
Vậy \(Min_A=\frac{-9+2\sqrt{7}}{2}\Leftrightarrow x=\frac{3}{2}\)
Tính giá trị nhỏ nhất của biểu thức: \(A=x^2+2y^2+2xy+2x-4y+2028\)
\(A=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-6y+9\right)+2018\)
\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2018\ge2018\)
\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 2xy – 6x – 8y + 2028
Lời giải:
$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$
$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$
$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$
Vậy $P_{\min}=2018$
Giá trị này đạt tại $x+y-3=y-1=0$
$\Leftrightarrow y=1; x=2$
a, Tìm giá trị nhỏ nhất của B=\(2x^2+y^2+2xy-8x+2028\)
b, Tìm giá trị của C=\(x^2+5y^2+4xy+2x+2y-7\)
c,Tìm x,y,z biết \(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
Cho biểu thức : A= 2x^2+ y^2+ 2xy -10x -4y+14 tìm giá trị nhỏ nhất của A
A = [y^2 +2y(x-2) + (x-2)^2] + (x^2-6x+9) + 1
= (y+x-2)^2 + (x-3)^2 + 1 >=1
Dấu = xảy ra khi <=> y+x-2 = x-3=0
<=> x=3; y=-1
tìm giá trị nhỏ nhất của biểu thức: 9x2+12xy-12xz+6x+8y2+4yz+12y+17z2+4z+14