cmr nếu G là trọng tâm tam giác ABC thì vtGB.vtGC=1/18 (b^2+c^2-5a^2)
cho tam giác abc. gọi g là diểm nằm trong tam giác. cmr nếu Sgbc=Sgca=Sgab=1/3Sabc thì g là trọng tâm tam giác abc
giải giùm nha (1-1/2*2)(1-1/2*3)(1-1/2*4).......(1-1/2*101) giải nhanh nhanh gium nha:)
cho tam giác abc. gọi g là diểm nằm trong tam giác. cmr nếu Sgbc=Sgca=Sgab=1/3Sabc thì g là trọng tâm tam giác abc
trước tiên bạn vẽ hình bình hành BGCK có I là giao điểm của hai đường chéo (nhớ vẽ hình nha ko thì hơi khó hiểu)
Ta có : vtGB + vtGC = vt GK ( theo quy tắc hbh)
theo gt: vt GA + vt GB + vt GC = vt 0
=> vt GA + vt GK = vt 0
=> G là trung điểm của đoạn AK
=> A, G ,I thẳng hàng và GA = 2GI, G nằm giữa A và I. Vậy G là trọng tâm tg ABC
Cho tam giác ABC , G là 1 điểm nằm trong tam giác ABC . CMR :
Nếu SGBC = SGAC = S GAB thì G là trọng tâm của tam giác ABC ,
Gọi M là giao điểm của GA với BC.
Ta thấy \(S_{GAB}=S_{GAC}\) mà hai tam giác trên chung cạnh đáy GA nên chiều cao hạ từ B và C xuông GA là bằng nhau.
Vậy thì \(S_{GBM}=S_{GCM}\)
Từ đó suy ra BM = CM hay M là trung điểm BC.
Vậy AM là trung tuyến tam giác ABC.
Lại có \(S_{GBM}=\frac{S_{GBC}}{2}=\frac{S_{ABG}}{2}\Rightarrow\frac{AG}{GM}=2\)
Vậy nên G là trọng tâm tam giác ABC.
tam giác ABC, I;O lần lượt là tâm dường tròn nội tiếp,ngoại tiếp tam giác; G là trọng trong tâm. CMR: Nếu goc AIO=90 độ thì IG // BC
Trong mặt phẳng Oxy cho tam giác ABC biết A(2;1);B(7;4);C( 6;9). Gọi G là trọng tâm ABC. 1/ Tìm tọa độ trọng tâm G của tam giác ABC. 2 Với M(–2:19). Chứng minh ba điểm A, G, M thẳng hàng.
cho 2 tam giác đều abc và a'b'c' có chung trọng tâm g. Gọi x,y,z lần lượt là trung điểm aa',bb',cc'. CMR: tam giác xyz cũng là tam giác đều và có trọng tâm g
1) cho G là trọng tâm của tam giác đều ABC. CMR: GA=GB=GC
2) cho tam giác ABC, trung tuyến AD,BE, CF. từ E kể đường thẳng // D cắt tia ED tại I
a) CM: IC//BE b) CMR: nếu AD vuông góc BE thì tam giác ICF là tam giác vuông
c) so sánh các cạnh của tam giác ICF với các cạnh trung tuyến của tam giác ABC
LÀM ƠN GIÚP VỚI!!!!!!! mk cần bài này trước 13h15 chiều nay nha. THANKS Ạ.
cho tam giác ABC có ba góc nhọn, trực tâm H. Người ta dựng hình bình hành BHCD và gọi I là giao điểm của 2 đường chéo.
a, CMR : tư giác ABDC nội tiếp được.
b, So sánh góc BAH và góc OAC (O là tâm đường tròn ngoại tiếp tam giác ABC)
c, Gọi G là giao điểm của AI và OH. CMR: G là trọng tâm tam giác ABC
Cho tam giác ABC, gọi H, G, O lần lượt là trực tâm, trọng tâm, tâm đường tròn ngoại tiếp của tam giác, M là trung điểm BC
a. CMR : AH = 2* OG
b> CMR : H, G, O thẳng hàng và GH= 2*OG
AI LÀM ĐÚNG MÌNH LIKE CHO