Những câu hỏi liên quan
LP
Xem chi tiết
NL
14 tháng 9 2017 lúc 14:35

a) căn(2x+5) - căn(3-x) = x2 -5x + 8 
Điều kiện : \(-\frac{5}{2}\Leftarrow x\Leftarrow3\)
căn(2x+5) - căn(3-x) = x^2-5x+8 
\(\Leftrightarrow\)[căn(2x+5)-3]-[căn(3-x)-1]=x-5x+6 
nhân liên hợp 
\(\Leftrightarrow\)(2x+5-9) / [căn(2x+5)+3] -(3-x-1) / [căn (3-x)+1]=(x-2)(x-3) 
\(\Leftrightarrow\)(2x-4) / [căn (2x+5)+3] -(2-x) /  [ căn (3-x)+1]-(x-2)(x-3)=0 
\(\Leftrightarrow\)(x-2).M=0 
\(\Leftrightarrow\)x=2 hoặc M=0 
M=2 / [căn(2x+5)+3]+1 / [căn(3-x)+1]-x+3 

2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x 
voi -5/2<=x<=3 <->3-x thuoc[0;11/2] 
nen M>0 
vay x=2 
b/ 2+ căn(3-8x) = 6x + căn(4x-1) 
dk[1/4;8/3] 
6x-2+căn(4x-1)-căn(3-8x)=0 
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(... 
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x... 
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x... 
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0 
2+4/[căn(4x-1)+căn(3-8x)>0 
nen 3x-1=0 
x=1/3

Bình luận (0)
LP
14 tháng 9 2017 lúc 14:36

 a)  căn(2x+5) - căn(3-x) = x^2-5x+8 
dkxd -5/2<=x<=3 
căn(2x+5) - căn(3-x) = x^2-5x+8 
<->[can(2x+5)-3]-[can(3-x)-1]=x^2-5x+6 
nhan lien hop 
<->(2x+5-9)/[can(2x+5)+3] -(3-x-1)/[can(3-x)+1]=(x-2)(x-3) 
<->(2x-4)/[can(2x+5)+3] -(2-x)/[can(3-x)+1]-(x-2)(x-3)=0 
<->(x-2).M=0 
<->x=2 hoac M=0 
M=2/[can(2x+5)+3]+1/[can(3-x)+1]-x+3 

2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x 
voi -5/2<=x<=3 <->3-x thuoc[0;11/2] 
nen M>0 
vay x=2 
b/ 2+ căn(3-8x) = 6x + căn(4x-1) 
dk[1/4;8/3] 
6x-2+căn(4x-1)-căn(3-8x)=0 
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(... 
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x... 
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x... 
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0 
2+4/[căn(4x-1)+căn(3-8x)>0 
nen 3x-1=0 
x=1/3

Bình luận (0)
HV
Xem chi tiết
AV
9 tháng 3 2018 lúc 21:42

1 ) đặt ẩn phụ 

căn(x+4) = a

căn(4-x) = b

=> a^2 + b^2 = 8 ; a^2 - b^2 = 2x 

Thay vào phương trình giải rất dễ

2) điều kiện xác định " x lớn hơn hoặc = 1

từ ĐKXĐ => vế trái lớn hơn hoặc = 1

=> 2 - x lớn hơn hoặc = 1

=> x nhỏ hơn hoặc = 1

kết hợp ĐKXĐ => x = 1

3) mk chưa biết làm

Bình luận (0)
VA
Xem chi tiết
NT
25 tháng 8 2023 lúc 18:08

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

Bình luận (0)
SN
Xem chi tiết
NT
15 tháng 8 2023 lúc 11:47

a: \(3+\sqrt{2x-3}=x\)

=>\(\sqrt{2x-3}=x-3\)

=>x>=3 và 2x-3=(x-3)^2

=>x>=3 và x^2-6x+9=2x-3

=>x>=3 và x^2-8x+12=0

=>x>=3 và (x-2)(x-6)=0

=>x>=3 và \(x\in\left\{2;6\right\}\)

=>x=6

b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)

=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)

=>\(-\sqrt{x}-3=-4\)

=>\(-\sqrt{x}=-1\)

=>căn x=1

=>x=1(nhận)

c: \(\sqrt{2x+1}-x+1=0\)

=>\(\sqrt{2x+1}=x-1\)

=>x>=1 và (x-1)^2=2x+1

=>x>=1 và x^2-2x+1=2x+1

=>x>=1 và x^2-4x=0

=>x(x-4)=0 và x>=1

=>x=4

Bình luận (0)
DN
Xem chi tiết
H24
20 tháng 10 2021 lúc 19:30

\(ĐK:x\ge2\)

\(\sqrt{x+1}=\sqrt{x-2}+1\)

\(\Leftrightarrow x+1=x-1+2\sqrt{x-2}\)

\(\Leftrightarrow2\sqrt{x-2}=2\Leftrightarrow x=3\)

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
TH
1 tháng 6 2021 lúc 11:15

a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).

Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).

Đẳng thức xảy ra khi và chỉ khi x = -1.

Vậy..

Bình luận (0)
LH
1 tháng 6 2021 lúc 13:10

b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)

Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)

Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt

Xét \(x\ge1\) 

Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)

\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)

\(\Leftrightarrow0\le-1\) (vô lí)

Vậy x=0

c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\)  (đk: \(1\le x\le3\))

Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt

Xét \(x\ne1\)

Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)

Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)

Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\) 

\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)

Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\)  \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)

Từ (1) => x-1=0 <=> x=1

Vậy pt có nghiệm duy nhất x=1

Bình luận (0)
QL
Xem chi tiết
HM
1 tháng 10 2023 lúc 21:03

a) Bình phương hai vế của phương trình ta được:

\(2{x^2} - 6x + 3 = {x^2} - 3x + 1\)

Sau khi thu gọn ta được: \({x^2} - 3x + 2 = 0\). Từ đó tìm được \(x = 1\) hoặc \(x = 2\)

Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 2\) thỏa mãn.

Vậy nghiệm của PT đã cho là \(x = 2\)

b) Bình phương hai vế của phương trình ta được:

\({x^2} + 18x - 9 = 4{x^2} - 12x + 9\)

Sau khi thu gọn ta được: \(3{x^2} - 30x + 18 = 0\). Từ đó tìm được \(x = 5 + \sqrt {19} \) hoặc \(x = 5 - \sqrt {19} \)

Thay lần lượt hai giá trị này của x vào phương trình ban đầu, ta thấy chỉ có \(x = 5 + \sqrt {19} \) thỏa mãn.

Vậy nghiệm của PT đã cho là \(x = 5 + \sqrt {19} \)

Bình luận (0)
DT
Xem chi tiết
H3
Xem chi tiết