Những câu hỏi liên quan
H24
Xem chi tiết
HP
5 tháng 1 2021 lúc 17:22

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

Bình luận (0)
HP
5 tháng 1 2021 lúc 17:33

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

Bình luận (0)
H24
Xem chi tiết
TS
Xem chi tiết
HP
3 tháng 4 2022 lúc 18:01

a) \(\Delta\)=(m-3)2-4.1.(2m-11)=m2-14m+53=(m-7)2+4\(\ge\)4.

\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.

b) Từ ycđb, ta có: x12+x22=42 \(\Leftrightarrow\) (x1+x2)2-2x1x2=16 \(\Leftrightarrow\) (m-3)2-2(2m-11)=16 \(\Leftrightarrow\) m2-10m+15=0 \(\Leftrightarrow\) \(m=5\pm\sqrt{10}\).

Bình luận (2)
H24
Xem chi tiết
NL
5 tháng 3 2023 lúc 13:13

\(a+b+c=1-\left(2m+1\right)+2m=0\)

\(\Rightarrow\) Phương trình có 2 nghiệm \(x=1\) ; \(x=2m\)

Để pt có 2 nghiệm pb \(\Rightarrow2m\ne1\Rightarrow m\ne\dfrac{1}{2}\)

\(\left|x_1^2-x_2^2\right|=35\)

\(\Leftrightarrow\left|4m^2-1\right|=35\)

\(\Leftrightarrow\left[{}\begin{matrix}4m^2-1=35\\4m^2-1=-35\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=9\\m^2=-\dfrac{17}{2}\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=3\\m=-3< 0\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
AH
4 tháng 1 2021 lúc 18:22

Bài 2. 

ĐK: $x\geq \frac{-11}{2}$

$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)

\(\Delta'(*)=12\)

\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$

$\Rightarrow a=1; b=-2\Rightarrow ab=-2$

 

Bình luận (1)
AH
4 tháng 1 2021 lúc 18:19

Bài 1. 

Đặt $x^2+2x=t$ thì PT ban đầu trở thành:

$t^2-t-m=0(1)$

Để PT ban đầu có 4 nghiệm phân biệt thì:

Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$

Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt. 

Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$

Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$

Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)

Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$

b) 

Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$

PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$

Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$

Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$

c) Để PT ban đầu có nghiệm duy nhất thì:

\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất. 

d) 

Ngược lại phần b, $m\geq \frac{-1}{4}$

e) 

Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$

$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$

 

 

Bình luận (3)
SW
Xem chi tiết
NL
28 tháng 4 2021 lúc 12:01

Pt có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)

\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)

\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)

Bình luận (0)
NL
Xem chi tiết
DQ
26 tháng 4 2020 lúc 9:54

A, ta có: \(\Delta’\)=m2-1

Vậy trình có 2 nghiệm phân biệt <=> m2-1>0 => m>1

B,Phương trình có nghiệm kép khi: m2-1=0 => m=+- 1

Nghiem kép đó là: 0

Bình luận (0)
 Khách vãng lai đã xóa
NN
26 tháng 4 2020 lúc 16:08

\(x^2+2\left(m+1\right)x+2m+2=0\)

\(\Delta'=\left(m+1\right)^2-\left(2m+2\right)=m^2-1\)

a, Để phương trình có hai nghiệm phân biệt thì:

\(\Delta'>0\)

\(\Leftrightarrow m^2>1\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow m< -1;m>1\)

b, Phương trinh có nghiệm kép khi:

\(\Delta'\ge0\)

\(\Leftrightarrow m^2-1\ge0\)

\(\Leftrightarrow m\le-1;m\ge1\)

Theo Viet ta có:

\(x_1+x_2=-2\left(m+1\right)\)

\(x_1x_2=2\left(m+1\right)\)

\(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow4m^2+4m-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

So với điều kiện phương trình có nghiệm m=1 ; m =-2 

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
H24
13 tháng 6 2021 lúc 17:06

Xét phương trình: \(x^2-2\left(m+3\right)x+2m+5=0\Rightarrow\Delta'=\left(m+3\right)^2-2m-5=\left(m+2\right)^2\ge0\) .

Do đó phương trình luôn có 2 nghiệm và để phương trình có 2 nghiệm phân biệt thì \(m\ne-2.\)

Theo định lý viet thì ta có: \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=2m+5\end{cases}}\). Do đó: \(m>-\frac{5}{2}\)\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\Rightarrow\frac{1}{x_1}+\frac{1}{x_2}+2\sqrt{\frac{1}{x_1x_2}}=\frac{x_1+x_2}{x_1x_2}+2\sqrt{\frac{1}{2m+5}}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6}{2m+5}+2\sqrt{\frac{1}{2m+5}}=\frac{1}{2m+5}+2\sqrt{\frac{1}{2m+5}}+1=\left(\sqrt{\frac{1}{2m+5}}+1\right)^2=\frac{16}{9}\)

\(\Rightarrow\sqrt{\frac{1}{2m+5}}=\frac{1}{3}\Leftrightarrow\frac{1}{2m+5}=\frac{1}{9}\Leftrightarrow2m+5=9\Leftrightarrow m=2.\)

Vậy \(m=2.\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
AH
13 tháng 7 2020 lúc 9:52

Các bài này đều có phương pháp làm giống nhau

Bài 1:

Để pt có 2 nghiệm $x_1,x_2$ thì $\Delta=m^2-16\geq 0$

$\Leftrightarrow m\geq 4$ hoặc $m\leq -4(*)$

Áp dụng định lý Vi-et ta có: \(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=4\end{matrix}\right.\)

Khi đó:

\(\frac{1}{x_1^4}+\frac{1}{x_2^4}=\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)^2-\frac{2}{(x_1x_2)^2}=\frac{(x_1^2+x_2^2)^2}{(x_1x_2)^4}-\frac{2}{(x_1x_2)^2}\)

\(=\frac{[(x_1+x_2)^2-2x_1x_2]^2}{(x_1x_2)^4}-\frac{2}{(x_1x_2)^2}=\frac{(m^2-8)^2}{256}-\frac{2}{16}=\frac{257}{256}\)

\(\Leftrightarrow (m^2-8)^2-32=257\)

\(\Leftrightarrow (m^2-8)^2=289\Rightarrow m^2-8=\pm 17\)

\(\Rightarrow m^2=25\Rightarrow m=\pm 5\) (đều thỏa mãn $(*))$

Vậy $m=\pm 5$

Bình luận (0)
AH
13 tháng 7 2020 lúc 9:57

Bài 3:

Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:

$\Delta'=9-(m-3)>0\Leftrightarrow m< 12$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=6\\ x_1x_2=m-3\end{matrix}\right.\)

Khi đó:

$(x_1-1)(x_2^2-5x_2+m-4)=2$

$\Leftrightarrow (x_1-1)(x_2^2-6x_2+m-3+x_2-1)=2$

$\Leftrightarrow (x_1-1)(x_2-1)=2$ (nhớ rằng $x_2^2-6x_2+m-3=0$ do $x_2$ là nghiệm của pt $x^2-6x+m-3=0$)

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=2$

$\Leftrightarrow m-3-6+1=2$

$\Leftrightarrow m=10$ (thỏa mãn)

Vậy $m=10$

Bình luận (0)
AH
13 tháng 7 2020 lúc 10:01

Bài 2:
Để pt có 2 nghiệm phân biệt thì:

$\Delta'=16-8(m^2+1)>0$

$\Leftrightarrow 2-(m^2+1)>0\Leftrightarrow m^2-1< 0$

$\Leftrightarrow -1< m< 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=1\\ x_1x_2=\frac{m^2+1}{8}\end{matrix}\right.\)

Khi đó:

$(4x_1+5)(4x_2+5)+19=0$

\(\Leftrightarrow 16x_1x_2+20(x_1+x_2)+44=0\)

\(\Leftrightarrow 2(m^2+1)+20+44=0\Leftrightarrow m^2=-33< 0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn ycđb

Bình luận (0)